




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章二次函数单元检测试题一、 选择题(每题3分,共24分)1,已知点(a,8)在二次函数ya x2的图象上,则a的值是()A,2B,2C,2D,2,抛物线yx22x2的图象最高点的坐标是() A.(2,2) B.(1,2) C.(1,3) D.(1,3)3,若y=(2-m)是二次函数,且开口向上,则m的值为( ) A. B.- C. D.04,二次函数的图象如图1所示,则下列结论正确的是( ) A. B. C. D. 图15,如果二次函数(a0)的顶点在x轴上方,那么()A,b24ac0B,b24ac0C,b24ac0D,b24ac0图26,已知h关于t的函数关系式为h=gt2(g为正常数,t为时间), 则如图2中函数的图像为( ) 7,已知二次函数y=x23x,设自变量的值分别为x1,x2,x3,且3x1x2y2y3 B.y1y2y3y1 D.y2y3y18,关于二次函数y=x2+4x7的最大(小)值,叙述正确的是( ) A.当x=2时,函数有最大值B.x=2时,函数有最小值 C.当x=1时,函数有最大值D.当x=2时,函数有最小值二、 填空题(每题3分,共24分)9,二次函数y=2x2+3的开口方向是_. 10,抛物线y=x2+8x4与直线x4的交点坐标是_.11,若二次函数y=ax2的图象经过点(1,2),则二次函数y=ax2的解析式是12,已知抛物线经过点和,则的值是 . 13,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C (0,3),则二次函数的解析式是 14,若函数y=3x2与直线y=kx+3的交点为(2,b),则k,b.15,函数y=94x2,当x=_时有最大值_.16,两数和为10,则它们的乘积最大是_,此时两数分别为_. 三、 解答题(共52分)17,求下列函数的图像的对称轴、顶点坐标及与x轴的交点坐标.(1)y=4x2+24x+35; (2)y=-3x2+6x+2; (3)y=x2-x+3; (4)y=2x2+12x+18.18,已知抛物线C1的解析式是,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式19,填表并解答下列问题:x-1012y1=2x+3y2=x2 (1)在同一坐标系中画出两个函数的图像. (2)当x从1开始增大时,预测哪一个函数的值先到达16.(3)请你编出一个二次项系数是1的二次函数,使得当x=4时,函数值为16.编出的函数解析式是什么?20,已知抛物线y=x22x8. (1)试说明该抛物线与x轴一定有两个交点.(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P, 求ABP的面积.DCBFEA图321,已知:如图3,在RtABC中,C=90,BC=4,AC=8,点D在斜边AB上, 分别作DEAC,DFBC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y. (1)用含y的代数式表示AE. (2)求y与x之间的函数关系式,并求出x的取值范围.(3)设四边形DECF的面积为S,求出S的最大值.图422,某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图4所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米(1) 以O为原点,OC所在的直线为y轴建立平面直角坐标系,请根据以上的数据,求出抛物线y=ax2的解析式;(2)计算一段栅栏所需立柱的总长度(精确到0.1米).23、已知:,是方程的两个实数根,且,抛物线的图象经过点A(),B()(1) 求这个抛物线的解析式;(2) 设(1)中的抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和的面积;(注:抛物线的顶点坐标为);(3) 是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请求出点的坐标答案:解:(1)解方程,得,由,有,所以点,的坐标分别为,DHBEAOPMC将,的坐标分别代入,得解这个方程组,得所以抛物线的解析式为 (2)由,令,得解这个方程,得,所以点的坐标为由顶点坐标公式计算,得点 过作轴的垂线交轴于,则,所以 (3)设点的坐标为,因为线段过,两点,所以所在的直线方程为那么,与直线的交点坐标为, 与抛物线的交点坐标为 由题意,得,即解这个方程,得或(舍去),即解这个方程,得或(舍去)点的坐标为或参考答案:一、1,A;2,D;3,B;4,D;5,B;6,A;7,A;8,D.二、9,下;10,(4,20);11,y=2x2;12,;13,y=x24x+3;14,k,b12;15,0、9;16,25 5、5.三、17,(1)对称轴是直线x=-3,顶点坐标是(-3,-1),解方程4x2+24x+35=0,得x1=,x2=.故它与x轴交点坐标是(,0),(,0)(2)对称轴是直线x=1,顶点坐标是(1,5),解方程-3x2+6x+2=0,得,故它与x轴的交点坐标是. (3)对称轴是直线x=,顶点坐标是 ,解方程x2-x+3=0,得,故它与x 轴的交点坐标是.(4)对称轴是直线x=-3,顶点坐标是(-3,0),它与x轴的交点坐标是(-3,0);18,经检验,点A(0,5)、B(1,3)、C(1,11)都在抛物线C1上点A、B、C关于x轴的对称点分别为A(0,5)、B(1,3)、C(1,11),它们都在抛物线C2上设抛物线C2的解析式为,则解得所以抛物线的解析式是;19,(1)图略,(2)y2=x2的函数值先到达16,(3)如:y3=(x-4)2+16;20,(1)解方程x2-2x-8=0,得x1=-2,x2=4.故抛物线y=x2-2x-8与x轴有两个交点. (2)由(1)得A(-2,0),B(4,0),故AB=6.由y=x2-2x-8=x2-2x+1-9=(x-1)2-9.故P点坐标为(1,-9),过P作PCx轴于C,则PC=9,SABP=ABPC=69=27;21,(1)由已知得DECF是矩形,故EC=DF=y,AE=8-EC=8-y.(2)DEBC,ADEABC,即.y=8-2x(0x0时,函数值y随x的增大而增大B. 当x0时,函数值y随x的增大而减小C. 存在一个负数x0,使得当x x0时,函数值y随x的增大而增大D. 存在一个正数x0,使得当xx0时,函数值y随x的增大而增大8、(2014山东日照)已知二次函数y=x2-x+a(a0),当自变量x取m时,其相应的函数值小于0,那么下列结论中正确的是()(A) m-1的函数值小于0 (B) m-1的函数值大于0 (C) m-1的函数值等于0 (D) m-1的函数值与0的大小关系不确定图8二、填空题1、(2014湖北孝感)二次函数y =ax2bxc 的图象如图8所示,且P=| abc | 2ab |,Q=| abc | 2ab |,则P、Q的大小关系为 . Oyx图92、(2014四川成都)如图9所示的抛物线是二次函数的图象,那么的值是 xyO第4题(第3题)3、(2014江西省)已知二次函数的部分图象如图所示,则关于的一元二次方程的解为 4、(2014广西南宁)已知二次函数的图象如图所示,则点在第 象限5.图为二次函数的图象,给出下列说法:;方程的根为;当时,y随x值的增大而增大;当时,其中,正确的说法有 (请写出所有正确说法的序号)6.已知抛物线(0)的对称轴为直线,且经过点试比较和的大小: _(填“”,“”或“=”)三、解答题1、(2014天津市)知一抛物线与x轴的交点是、B(1,0),且经过点C(2,8)。(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标。2、(2014上海市)在直角坐标平面内,二次函数图象的顶点为,且过点(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标3、(2014广东梅州)已知二次函数图象的顶点是,且过点图10(1)求二次函数的表达式,并在图10中画出它的图象;(2)求证:对任意实数,点都不在这个二次函数的图象上图94、(2014贵州省贵阳)二次函数的图象如图9所示,根据图象解答下列问题:(1)写出方程的两个根(2分)(2)写出不等式的解集(2分)(3)写出随的增大而减小的自变量的取值范围(2分)(4)若方程有两个不相等的实数根,求的取值范围。(4分)xyO3911AB图135、(2014河北省)如图13,已知二次函数的图像经过点A和点B(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(m,m)与点Q均在该函数图像上(其中m0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离6.(2014孝感)已知关于x的方程x2(2k3)x+k2+1=0有两个不相等的实数根x1、x2(1)求k的取值范围;(2)试说明x10,x20;(3)若抛物线y=x2(2k3)x+k2+1与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且OA+OB=2OAOB3,求k的值7、(2014山东日照)容积率t是指在房地产开发中建筑面积与用地面积之比,即t=,为充分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般地容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线段c来表示()试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;()求出图(2)中抛物线段c的函数关系式.8.(2014青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本每天的销售量)9.(2014浙江省)如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2。(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由。 二次函数培优压轴题1.如图,抛物线的顶点为P(1,0),一条直线与抛物线相交于A(2,1),B(,m)两点(1)求抛物线和直线AB的解析式;(2)若M为线段AB上的动点,过M作MN轴,交抛物线于点N,连接NP、AP,试探究四边形MNPA能否为梯形,若能,求出此时点M的坐标;若不能,请说明理由ABPOxy2.如图所示,在平面直角坐标系中,抛物线yax 2bxc(a0)经过A(1,0)、B(3,0)、C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;OADECBP-1-3-2-1-23-1123xy(3)在(2)的条件下,当s取得最大值时,过点P作x轴的垂线,垂足为F,连接EF,把PEF沿直线EF折叠,点P的对应点为P ,请直接写出P 点坐标,并判断点P 是否在该抛物线上3如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1x2,与y轴交于点C(0,4),其中x1,x2是方程x 22x80的两个根(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PEAC,交BC于点E,连接CP,当CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使QBC成为等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由BAyOPECx4已知:如图所示,关于x的抛物线yax 2xc(a0)与x轴交于点A(2,0),点B(6,0),与y轴交于点C(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由BAyOCx5如图,矩形OABC的两边OA、OC分别在x轴和y轴上,A(3,0),过点C的直线y2x4与x轴交于点D,二次函数yx 2bxc的图象经过B、C两点(1)求B、C两点的坐标;(2)求二次函数的解析式;(3)若点P是CD的中点,求证:APCD;OCBAPDxy(4)在二次函数的图象上是否存在这样的点M,使以A、P、C、M为顶点的四边形为矩形?若存在,求出点M的坐标;若不存在,请说明理由6已知:抛物线yax 2bxc(a0)的对称轴为x1,与x轴交于A、B两点,与y轴交于点C,其中A(3,0)、C(0,2)(1)求这条抛物线的函数表达式(2)已知在对称轴上存在一点P,使得PBC的周长最小请求出点P的坐标(3)若点D是线段OC上的一个动点(不与点O、点C重合)过点D作DEPC交x轴于点E,连接PD、PE设CD的长为m,PDE的面积为S求S与m之间的函数关系式试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由ACxyBO7.如图,已知抛物线yx 21与x轴交于A、B两点,与y轴交于点C(1)求A、B、C三点的坐标(2)过点A作APCB交抛物线于点P,求四边形ACBP的面积(3)在x轴上方的抛物线上是否存在一点M,过M作MGx轴于点G,使以A、M、G三点为顶点的三角形与PCA相似?若存在,请求出M点的坐标;否则,请说明理由ABOPCxy8如图,抛物线yax 2bx3与x轴交于A,B两点,与y轴交于C点,且经过点(2,3a),对称轴是直线x1,顶点是M(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线yx3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断AEF的形状,并说明理由;(4)当E是直线yx3上任意一点时,(3)中的结论是否成立?(请直接写出结论)OBxAMC1y-39如图,已知抛物线yax 2bxc与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点(1)求此抛物线的解析式;(2)若点D为线段OA的一个三等分点,求直线DC的解析式;OyxABC(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长11如图,已知抛物线yax 2bx4与直线yx交于点A、B两点,A、B的横坐标分别为1和4(1)求此抛物线的解析式(2)若平行于y轴的直线xm(0m1)与抛物线交于点M,与直线yx交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示)(3)在(2)的条件下,连接OM、BM,是否存在m的值,使得BOM的面积S最大?若存在,请求出m的值,若不存在,请说明理由ABMPONxyxmyx12如图,抛物线经过A(4,0),B(1,0),C(0,2)三点(1)求此抛物线的解析式;(2)P是抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;BOCyAx4-2(3)在直线AC上方的抛物线上有一点D,使得DCA的面积最大,求出点D的坐标13. 如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2),ABE与ACE的面积大小关系如何? 当时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得BOC是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由. 图(1)图(2)14.如图,已知抛物线轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.(1) 求此抛物线的解析式;(2) 设E是线段AB上的动点,作EFAC交BC于F,连接CE,当CEF的面积是BEF面积的2倍时,求E点的坐标;ABOCyx(3) 若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.15.如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式(2)连结PO、PC,并把POC沿CO翻折,得到四边形POPC, 那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版重点工程项目土石方挖运工程承包合同
- 2025别墅铜门设计、生产、销售及售后合同
- 2025版公司治理法律顾问聘用合同模板
- 2025版空调设备租赁与能源管理优化合同
- 2025版施工现场安全生产责任承诺合同
- 2025版个人房屋装修贷款合同范本下载
- 2025年度智能家居房地产抵押借款合同
- 木材装饰纹理处理工艺考核试卷及答案
- 黄酒酒花添加量调整工艺考核试卷及答案
- 饲料增稠剂工艺考核试卷及答案
- 兽药销售业务培训教材
- 2025年湖北省农村义务教育学校教师公开招聘小学语文真题(附答案)
- 2025-2030中国医疗护理器械行业市场发展现状及发展趋势与投资风险研究报告
- 2025四川绵阳市医学会招聘2人笔试模拟试题及答案解析
- 软件项目突发事件应急预案
- 2025年潍坊市中考数学试题卷(含标准答案)
- 医保打击欺诈骗保课件
- 并购整合方案模板(3篇)
- 调酒小摊设计方案(3篇)
- 虚拟现实在初中化学教学产品中的应用效果与设计创新(2025年)
- 2025年高速公路防汛应急演练方案(带演练脚本可直接使用)
评论
0/150
提交评论