重庆医科大学药学院选修课XXXX年生物医用材料考试题.doc_第1页
重庆医科大学药学院选修课XXXX年生物医用材料考试题.doc_第2页
重庆医科大学药学院选修课XXXX年生物医用材料考试题.doc_第3页
重庆医科大学药学院选修课XXXX年生物医用材料考试题.doc_第4页
重庆医科大学药学院选修课XXXX年生物医用材料考试题.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆医科大学药学院2011年生物医用材料考试题(2011年11月)专业10级五年儿科学号2010221741姓名黄方圆成绩一、什么叫人工人工胰 ? 人工试述人工胰的基本构造与工作原理;并自选材料制备生物人工胰。二、什么叫人工肾 ? 试述人工肾的设计原理;并说明试述人工肾的设计依据、基本结构、适应症、工作原理及其临床应用。三、举例说明复合人工骨支架材料的研究与应用。四、试述生物矿化的原理,举例说明其生物学意义。五、举例说明多糖或糖蛋白在生物材料结构中的作用和意义。六、试举例说明脂质体制备及其在医药中的应用。题号得分教师签名一三六总分说明:1. 必须以此页面作为试卷封面。2. 任选上述三题,并将题号填入上表。3. 交试卷时间:本周至17周周二下午杏园5楼教师办公室王驰老师处,请亲自交去并签字。题目一:人工胰一、人工胰的概念: 能模拟胰腺生理分泌功能的人工胰是维持完善的血糖调节以治疗糖尿病的有效手段。新型人工胰装置包括传感器和泵两部分。植人体内的传感器能即时检测患者所需胰岛素的剂量,然后驱动泵向体内输入适量药剂,以帮助患者完成糖代谢。安装人工胰装置后,糖尿病患者便可不必每天接受胰岛素注射,也省去了频繁化验血糖值的麻烦。它能够像医生一样判断人体需要的精确剂量,按需给药。人工胰是用人工方法取代正常胰腺内分泌功能的一种机械装置,由微机控创。人工胰是糖尿病患者的胰岛素分泌不足时的一种补充。 二、人工胰的基本构造: 1、高度智能化的胰岛素泵 2、全自动动态血糖测定仪 三、人工胰的基本工作方法:1、其接头可与任何一款胰岛素泵专用输注导管接口连接。 2、能直接自动输注追加量。 3、可直接与计算机连接下载泵内全部数据。 4、可与专配的小型血糖测试仪融为一体,测定的血糖值立即自动输入泵内,并立即显示在泵的视窗上,7秒内泵会自动显示出你目前的血糖值是否达到目标血糖范围,是否低于或高于目标范围。如果低血糖或高血糖,泵会立即计算出来并推荐你需要补充或减少多少追加量。 四、人工胰的基本工作原理: 1、血糖监测方法(采用葡萄糖氧化酶化学法) (1)将针型的葡萄糖感受器插入皮下组织,由感受器前端的测试头自动检测 (2)测试头由半透膜、葡萄糖氧化酶与微电极组成。通过测试头前端的葡萄糖氧化酶与人体液中的葡萄糖发生化学反应生成的电信号进行检测 (3)动态血糖仪内的记录器每10秒从测试头接受一次电信号,将5分钟的值平均后转换成血糖值存贮在动态血糖仪内,每天可贮存288个血糖测定值 (4)需要测定外周血糖校正,每个测试头可用3天。三天后将这些数据通过仪器上的红外线接口输入计算机,便可获取每天的血糖变化图与统计数据,血糖测定的数据不能即测即得。 (5)血糖存储值:可连续存贮共14天的(4千余个)血糖数据(还可存贮进餐、运动、入睡、工作等情况)。血糖测试范围40400mg /dl,与外周指血血糖测定数据相关系数为0.92。2、胰岛素泵是一个输注胰岛素的装置,它是由患者(通常在医生的指导下)自己根据血糖的波动情况,在胰岛素泵内设置好个体化的基础率输注程序、进食前追加剂量输注程序,开启后自动输注、由患者自己操作使用的小型精密仪器。目前所有的胰岛素泵都还不能自动感知使用者体内血糖的水平,也不能自动将血糖控制到正常,患者必须不断地检测血糖来校正、调整胰岛素泵所输出地胰岛素剂量,从而使血糖水平正常化。目前的胰岛素泵还不是全自动的“人工胰”。所以还需要使用者通过多次监测血糖,用经过学习培训的大脑来指挥与操作胰岛素泵,从而达到几乎正常的血糖水平而又不发生低血糖 五、生物人工胰的制备 1生物人工胰:以琼脂糖/聚乙烯醇互穿聚合物网络为免疫隔离膜 生物人工胰,即把胰岛包被在免疫隔离半透膜中保护使其不受排斥,已进行了广泛的研究,大多数使用海藻酸钠-聚赖氨酸作为免疫隔离膜,但其选择渗透性不尽如意。对琼脂糖膜的研究显示,由于其具有高度组织相容性和稳定性而在移植领域。 2开路型植入式脉冲缓释双路人工胰(泵):包括胰岛素接受器,与胰岛素接受器出口连通的胰岛素贮藏囊,其特征是还有固定速率缓释泵,体外磁力施压器,含受体外磁力施压器控制的磁动子的磁性脉冲泵,磁性脉冲泵中有与固定速率缓释泵连通的压力供压囊,与胰岛素贮藏囊出口连通的脉冲囊。体积小,成本低,可植入体内,操作简单,使用寿命长,患者感受舒适,可精确地控制血糖,预防糖尿病慢性合并症,延长糖尿病患者的生命,可在我国广泛使用。 3植入型人工胰:法国蒙彼利埃市大学医疗中心,在世界上首次为一胰岛素依赖型糖尿病患者成功地进行了人工胰腺植入手术。这个人工胰腺主要由胰岛素泵和血糖监测仪两部分组成。胰岛素泵被植入患者腹腔内的胰腺位置上,大约有厘米厚厘米长,主要包括一个使用寿命为年的电池和一个浓缩胰岛素储藏器。 题目三:复合人工骨支架材料1、 复合人工骨是一种使用复合材料制成的人工骨 ,基本原理是将具有骨传导能力的材料与具有骨诱导能力的物质如骨生长因子、骨髓组织等复合制备成复合人工骨,使它们既具有骨传导作用,又具有骨诱导作用。 二、生物无机与有机高分子复合骨修复材料 自70年代末,羟基磷灰石作为新型生物材料问世以来,已越来越引起医学界及相关学科浓厚兴趣。由于羟基磷灰石是由与人体硬组织无机质相近的物质组成的,因此羟基磷灰石是骨和牙齿种植中很具潜力的生物材料。由于纯羟基磷灰石脆性较大,强度较低,所以人们都在通过各种途径对它进行改性制成复合材料,生物有机高分子基复合材料,尤其生物无机与高分子复合材料的出现和发展,为人工器官和人工修复材料、骨填充材料开发与应用奠定了坚实的基础。 自然骨是由磷灰石和高分子胶原纤维构成的无机/有机复合材料,具有良好的力学性能。基于仿生的概念,人们期望能研制出一种机械强度和韧性好,弹性模量接近自然骨的生物活性材料,一些聚合物具有较好的韧性和接近人骨的弹性模量,但缺乏生物活性。磷酸钙无机材料是构成人骨无机质的主要成分,因而与自然骨组织有天然的亲和性,磷酸钙无机材料生物相容性好,能与周围骨组织形成牢固的键合,但该种材料的脆性大、抗折强度低和成型困难。磷酸钙无机材料与高聚物复合,可以将二者性能充分结合起来,可望得到力学性能好(强度高、韧性好),弹性模量与人骨相近且具有良好生物相容性和生物活性的骨修复和重建生物材料。目前常见的生物无机与有机高分子复合材料主要有:羟基磷灰石(HA)、磷酸三钙(TCP)、A-W玻璃陶瓷(BGC)和生物玻璃(BG)与增强高密度聚乙烯(HDPE)、聚酰胺(PA)、聚甲基丙烯酸甲酯(PMMA)、聚乳酸(PLA)、聚乙醇酸(PGA)及聚乳酸和聚乙醇酸的共聚物(PLGA)等高分子化合物的复合材料。HDPE-HA复合材料随HA掺量的增加,其密度也增加,弹性模量可从1GPa提高到9MPa,由于该复合材料的弹性模量处于自然骨杨氏模量范围之内,具有极好的力学相容性,并且具有引导新骨形成的功能。AW玻璃陶瓷和生物玻璃增强HDPE复合材料具有与HA增强HDPE复合材料相似的力学性能和生物学性能,复合材料在37的SBF溶液中体外实验研究表明,在其表面可形成磷灰石层,通过控制和调整AW玻璃陶瓷和生物玻璃的含量,使其满足不同临床应用的需求。聚乳酸具有良好的生物相容性和可降解性,但材料还缺乏骨结合能力,对X光具有穿透性,不便于临床上显影观察。将聚乳酸与HA颗粒复合有助于提高材料的初始硬度和刚性,延缓材料的早期降解速度,便于骨折早期愈合。随着聚乳酸的降解吸收,HA在体内逐渐转化为自然骨组织,从而提高材料的骨结合能力和材料的生物相容性;此外可提高材料对X-射线的阻拒作用,便于临床显影观察。 三、 HA /胶原复合骨修复材料 胶原是机体生命的最根本的基质,它具有以脯氨酸等中性氨基酸和含有碱性或酸性侧链的氨基酸蛋白质的结构和特性。选用与自然骨有机质更接近的胶原与HA复合,这样植入材料就能和受骨的骨胶原末端的胺基和羟基相结合,形成具有生物活性的化学性结合界面,从而发挥其正常的生理功能作用。目前研究已证实,胶原与多孔羟基磷灰石陶瓷复合,其强度比HA陶瓷提高23倍,胶原膜有利于孔隙内新生骨生长,植入狗的股骨后仅4周,新骨即已充满所有大的孔隙。胶原与颗粒状HA复合已成为克服牙槽嵴萎缩的最理想材料。HA-胶原复合材料已得到广泛、深入的研究与开发。 当HA与胶原质量比为4.5:1时,HA形成时间可由4.55h,缩短到2.53h。研究表明脱矿胶原基质对溶液中的Ca、P具有诱导吸附作用,并符合传统的成核理论,胶原表面的非均相成核可降低HA晶核的临界能或表面能,胶原纤维在溶胶中的出现缩短了HA形成的最初时间。冷冻干燥后的复合材料SEM分析表明,HA晶粒沉积在胶原纤维表面,胶原纤维为HA的形成提供了成核的模板或成核的位置,并能降低其成核能,对HA形成起到加速作用。复合材料的抗弯强度达712.5Mpa,弹性模量为0.21.7GPa,HA-胶原复合材料的断裂功为0.51kj/m2,与HA陶瓷和自然骨相比,高于纯HA(0.07kj/m2),而略低于自然骨。 四、n-HA /聚酰胺复合骨修复材料 羟基磷灰石(HA)是构成人体硬组织的主要无机质,它无毒、无刺激、无任何不良反应,具有良好的生物相容性和生物活性。其表面带有极性,与人体细胞、多糖和蛋白质能以氢键结合,与机体组织有较强的亲和力。羟基磷灰石不但能起到钙盐沉积的支架作用,而且还能诱导新骨的形成,能直接和人体软、硬组织形成键合,在骨骼修复和替换中正在发挥越来越重要的作用。然而羟基磷灰石生物陶瓷的脆性和不易于手术赋形等缺点,限制了它在临床上的广泛应用。为提高羟基磷灰石的韧性和线型加工性能,可以把羟基磷灰石和高分子复合,制备新型有良好机械力学性能和生物活性的可承力的骨修复和替代材料。传统的复合方法很难实现既提高羟基磷灰石在复合材料中的含量,同时又保证复合材料两相间的界面结合和力学强度,因而有必要采用纳米级羟基磷灰石和聚合物复合,来制备纳米生物医用复合材料。聚酰胺(PA)由于和人体的胶原蛋白在分子结构上十分相似,所以和人体组织有良好的相容性,是一类优良的医用高分子材料,且具有较高的韧性和强度,在临床有广泛而长期的应用,如医用缝线、复合人工皮等。由于在其主链上含有许多重复的极性酰胺基团(-HN-C=O),以及链两端的极性基团(-NH2,-COOH),因而它是一类极性聚合物,与极性的无机磷酸钙材料相容性好。 自然骨中磷灰石含量在65wt%左右,并有序沉淀于胶原基体中,但目前报道的一般合成方法很难获得一种高HA含量的生物活性复合材料。李玉宝等人用常压共溶法制备了磷灰石/聚酰胺复合材料。结果表明,磷灰石在复合材料中的含量可达65wt%左右,接近自然骨中磷灰石的水平。在复合材料的两相界面间形成了化学键;此种复合材料的性能,特别是抗压、抗弯强度和弹性模量与人体皮质骨类似24。动物实验结果表明:磷灰石/聚酰胺复合材料具有优异的生物活性和力学性能,与自然骨能形成牢固的生物性的骨键合。在狗的软组织中还发现该种材料有诱导软骨的特性,是一种较为理想的新型骨修复材料。 在该复合材料中,n-HA含量高于同类产品,因而具有很高的生物活性;n-HA在复合材料中分布均匀;n-HA与PA66之间既有化学键合又有分子间的相互作用,使复合材料能更好地传递外应力,达到既增强又增韧的目的。n-HA/PA66复合材料具有良好的生物活性和力学性能,是一种优良的人工骨材料。该人工骨材料在骨的愈合、塑形整个过程可持续给予骨缺损(尤其是大段骨缺损)部位坚强的力学支持,可缩短住院时间,使成功修复大段骨缺损的临床愿望得以实现。对经过灭菌的n-HA/ PA66复合材料进行毒性测试,溶血测试,刺激测试等,表明n-HA/ PA66复合材料无毒,无刺激,生物安全性好。长耳兔的牙、脊椎、颅骨等植入实验显示,n-HA/ PA66复合材料具有良好的生物相容性和生物活性,动物临床试验已完成。临床人体骨修复研究结果表明,二十余例手术效果优良,并取得突破性成果。目前,该人工骨正进入临床使用阶段。 五、展望 随着现代科学技术的飞速发展,生物医用复合材料将愈来愈显示其重要作用。纳米技术的应用为生物医用复合材料的研究带来突破性的成果。生物医用无机与有机高分子复合材料的研究与开发,目前还处于起步阶段,用于临床的复合材料仍然很少。人工骨的临床应用虽然已有较长时间,但大多也仅仅是用作充填材料,同真正意义上的人工骨还有距离。有理由相信,随着生物医用无机与有机高分子复合材料的研究与开发的不断深入,充分满足临床需要的人工骨将最终得到广泛应用。生物医用复合材料已成为生物医用材料研究和发展中最活跃的领域。目前,这种新型生物医用符合材料正在与药物、基因、蛋白和生长因子等相结合,使生物医用材料又走向生物医药材料这一崭新领域。 题目六:脂质体脂质体制备及其在医药中的应用一、脂质体脂质体(liposome)是一种人工膜。在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径251000nm不等。脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部。、生物学定义:当两性分子如磷脂和鞘脂分散于水相时,分子的疏水尾部倾向于聚集在一起,避开水相,而亲水头部暴露在水相,形成具有双分子层结构的的封闭囊泡,称为脂质体。 、药剂学定义:系指将药物包封于类脂质双分子层内而形成的微型泡囊体。 二、脂质体的制备一般脂质体的制备都包括以下几个主要步骤:、脂质体原料的溶解、水合和非均质囊泡的形成;、囊泡均质化; 、脂质体囊泡分离或分散到某种介质中。脂质体制备常用的方法(含举例)主要有下列几种: (一)、设备强化法1超声波分散法将水溶性药物溶于磷酸盐缓冲液中,然后加入磷脂、胆固醇与脂溶性药物,共溶于有机溶剂的溶液中。搅拌蒸发除去有机溶剂,将残液经超声波处理,分离出脂质体,再混悬于磷酸盐缓冲液中,制成脂质体混悬型注射剂。 例如,氨基酸脂质体的制备,取氨基酸50mg溶于pH为71的磷酸盐缓冲液中,加入到由磷脂25mg、胆固醇42mg、磷酸二鲸蜡脂28mg,溶于55ml氯仿环己烷制成的溶液中,蒸发除去环己烷,残液经超声分散,分离出脂质体,重新混悬于磷酸盐缓冲液中。该脂质体在4能贮存一个月,可供口服或注射给药,具缓释作用。 2冷冻干燥法 将磷脂经超声处理,然后高度分散于缓冲盐溶液中,并加入冻结保护剂(如甘露醇、葡萄糖、海藻酸等),冷冻干燥后,将干燥物分散到含药物的缓冲盐溶液或其他水性介质中,即可形成脂质体。 例如,维生素B。脂质体的制备,取卵磷脂289分散于100mmolL磷酸盐缓冲液(pH为7)与09氯化钠溶液(1:1)的混合液中,超声处理后与甘露醇混合,于真空下冷冻干燥,随即用含l25mg维生素Bt。的上述缓冲盐溶液进行分散,进一步超声处理,即可得到均匀脂质体混悬液。 (二)、物理法 1薄膜分散法 将磷脂、胆固醇等类脂质及脂溶性药物溶于环己烷(或其他有机溶剂)中,然后将环己烷溶液在玻璃瓶中旋转蒸发,使在烧瓶内壁上形成薄膜;,将水溶性药物溶于磷酸盐缓冲液中,加入烧瓶中不断搅拌,即得脂质体。 例如,氟尿嘧啶脂质体,就是用磷脂(卵磷脂或脑磷脂)和胆固醇与磷酸二鲸蜡脂,按摩尔比7:2:1或48:28:1配成氯仿溶液,真空蒸发除去氯仿,使在器壁上形成的薄膜加入等渗的缓冲液(pH为60,001molL磷酸盐),其中含氟尿嘧啶77 mmolL,类脂质在缓冲液中的浓度为5070mmolL,加玻璃珠数枚,搅拌2min,在25放置2h,使薄膜吸胀;再在25搅拌2h,得到脂质体,粒径为055m。 2逆相蒸发法 将磷脂等膜材溶于有机溶剂如氯仿、乙醚中,加入待包封药物的水溶液水溶液:有机溶剂=(1:3)(1:6)进行短时超声,直到形成稳定的wo型乳剂,然后减压蒸发除去有机溶剂,达到胶态后,滴加缓冲液,旋转使器壁上的凝胶脱落,在减压下继续蒸发,制得水性混悬液,通过凝胶色谱法或超速离心法,除去未包入的药物,即得大单室脂质体。 例如:超氧化物歧化酶(SOD)脂质体的制备,将卵磷脂lOOmg和胆固醇50mg溶于乙醚中,加入用4mmolL磷酸盐缓冲溶液(PBS)配成的SOD溶液,超声处理2min(每处理05min,间歇05min),立即在水浴中减压旋转蒸发至呈现凝胶状,旋涡振荡使凝胶转相,再继续蒸发除尽乙醚,超速离心(35000rmin,30min)分离除去未包人的SOD,沉淀用水洗2次,离心,得沉淀,用10mmolL PBS稀释即得。 3注入法 将磷脂与胆固醇等类脂质及脂溶性药物共溶于有机溶剂中(一般多采用乙醚),然后将此药液经注射器缓缓注入加热至5060(并用磁力搅拌)的磷酸盐缓冲液(可含有水溶性药物)中,加完后,不断搅拌至乙醚除尽为止,即制得脂质体,其粒径较大,不适宜静脉注射。再将脂质体混悬液通过高压乳匀机2次,则所得的成品,大多为单室脂质体,少数为多室脂质体,粒径绝大多数在2m以下。 例如:亚油酸脂质体,取磷酸盐缓冲液100ml,在磁力搅拌器上搅拌加热至约60;再称取1g精制大豆磷脂、1g胆固醇、1g亚油酸及2g油酸山梨坦溶于30ml乙醚中,然后滴注于上述60缓冲盐溶液中,继续搅拌,加适量缓冲盐溶液至100ml即得。 随着对脂质体表面活性剂的研究和新型表面活性剂的开发,脂质体的制备方法还会改进,相信将有更为简单有效的制备方法出现。三、脂质体在医药中的应用(一)、作为抗肿瘤药物的载体1、脂质体用作化疗药物载体的特点脂质体剂型可以在某种程度上提高化疗药物的靶向性,并大幅度地降低化疗药物的毒副作用,从几种途径提高化疗药物的治疗指数。与目前其它的抗癌药物剂型相比较,脂质体具有独特的优点,脂质体用于抗癌化疗的最主要优点是降低毒性而继续保持细胞毒作用。将细胞生长抑制剂如阿霉素或柔红霉素包在脂质体中可明显地降低心脏毒性和皮肤毒性,实验动物的存活率比游离药物对照组高。阿霉素及柔红霉素脂质体的这种优点在许多脂质体制剂中都观察到,而与它们所用的脂质组成无关。但是改变脂质组成如增加胆固醇量或使用高相变温度的磷脂有助于包裹药物的脂质体在血液中保持完整性。2、化疗药物脂质体的现状迄今为止,国内外报道的已经包封成脂质体的各种抗癌药物很多,如阿霉素、放线菌素D、卡氮芥、顺铂、争光霉素、阿糖胞苷、甲氨蝶呤、6-巯基嘌呤、氮芥、三尖杉酯碱等。Hunt等以成膜法制备了阿糖胞苷的多室脂质体,又通过超声得到小单层脂质体,并研究了阿糖胞苷在不同类型脂质体中的包封率和通透性。临床研究揭示,阿霉素脂质体对转移性乳房肿瘤有明显的活性而无明显的心脏毒性。而且可将阿霉素脂质体用于原来使用游离药物时由于毒性太大而被限制使用的其它癌症。(二)、作为抗网状内皮系统疾病药物的载体脂质体作为网状内皮系统疾病治疗药物的载体是其最成功的应用之一。由于脂质体的天然靶向性,使网状内皮系统的器官和细胞成为包封药物脂质体的靶向区,定向地将治疗药物有效地运送到网状内皮系统患病细胞中释放药物。1、抗寄生虫病 有些寄生虫病,如利什曼病和疟疾是某种寄生虫侵入网状内皮细胞引起病变。过去治疗这些疾病需使用毒性很大的药物杀死寄生虫,同时这些药物对人的毒性也很大。例如治疗利什曼病的含五价锑的药物的中毒剂量和治疗有效剂量相当接近,而且这些药物又能引起心肌炎和肾炎的发生。如果将这些药物包封成脂质体不仅能有效地杀死寄生虫,同时也极大地降低了药物的毒性。在动物实验中,脂质体药物以游离药物11000的剂量即可治愈利什曼病,脂质体剂型的治疗指数是游离药物的3040倍。尤其是对那些使用游离药物治疗已无效的晚期患者。使用脂质体药物治疗也有效。Carl等用含锑剂脂质体治疗金黄色田鼠利什曼病时,疗效可增加350700倍,只用原剂量的0.15即显效,且明显降低了急性心肌病理性变化及中毒性肾炎等毒副作用。Alving等也介绍了制备含锑药物和8-氨基喹啉衍生物脂质体的方法和结果。目前这两种治疗利什曼病脂质体的效果已经得到大量的临床验证。同样,利用脂质体包封抗疟药物,如奎宁或核糖脂类药物也可以比游离药物更有效地抑制疟疾发作。 2、对酶系统疾病的治疗脂质体既有保护药酶防止失活的作用,又有天然靶向性使包封的酶主要被肝摄取,所以脂质体是治疗酶原贮积病药物的最好载体。实验已证明葡萄糖脑苷酶-葡萄糖苷酶脂质体可有效地治疗溶酶体贮积病,Raman及Gergoriadis等先后曾治疗数例高歇(Gancheris)病,治疗后肝区疼痛减轻,病情停止恶化,据认为是酶脂质体易为网状内皮系统所内吞而定位于酶体。脂质体也用于治疗其它酶系统疾病,并取得很好效果。例如应用包封淀粉 - 葡萄糖酶的多层脂质体治疗型糖原贮积病(Pompe病),可使患者肝大明显缩小。又如过去使用游离的葡萄糖脑苷脂酶治疗溶血酶原贮积病,由于酶在体内的破坏失活和缺少靶向性,服药后患者的临床指标很少或没有改变。如果将酶包封在脂质体中给患者静脉注射,直到注射后48h仍然有效。(三)、作为解毒剂的载体 重金属如铅、钚等进入体内在肝等器官中累积而造成中毒,引起某些疾病。使用某些螯合物如EDTA或DTPA可以溶解金属,治疗金属贮积病,但这些螯合物不能通过细胞膜而影响了它们的体内效果。将螯合物制成脂质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论