




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江中学2011级高一数学学案数学是打开科学大门的钥匙轻视数学将造成对一切知识的危害(英国思想家)R.培根班级姓名日期自我评价教师评价课题:3.42基本不等式的应用(1) 学习目标1进一步掌握基本不等式;2会运用基本不等式求某些函数的最值,求最值时注意一正二定三相等重点与难点基本不等式的灵活运用问题情境复习:基本不等式 基本不等式除了常用于证明不等式外,还经常用于求某些函数的最大值或最小值自主学习思考与回顾已知都是正数, 如果积是定值,那么当时,和有最小值;如果和是定值,那么当时,积有最大值如何证明?说明:最值的含义(“”取最小值,“”取最大值); 用基本不等式求最值的必须具备的三个条件:一正二定三相等例题精选题型一:利用基本不等式求最值例1求的最小值.变式:(1)若,则为何值时有最小值,最小值为多少?(2)求 的最值,并求取最值时的的值.(3)若上题改成,结果将如何?例2若,且,求与的最小值变式:(1)若,求的最小值;(2)设、且,求的最小值.例3求的最大值,并求取时的的值.例4.求函数的最小值. 思维点拔:利用基本不等式求解时,等号不能成立,故改用函数单调性求解.学习小结1用基本不等式求最值的必须具备的三个条件:一“正”、二“定”、三“相等”,当给出的函数式不具备条件时,往往通过对所给的函数式及条件进行拆分、配凑变形来创造利用基本不等式的条件进行求解;2运用基本不等式求最值常用的变形方法有:(1)运用拆分和配凑的方法变成和式和积式;(2)配凑出和为定值;(3)配凑出积为定值;(4)将限制条件整体代入.成功体验1若,则的最大值为 2下列函数中,最小值是的是 , 3已知函数, 则此函数的最小值为 4已知, 则的最大值为 5已知, 且, 则的最大值为 6已知 且, 求的最小值,并求相应的 的值课后作业一、 完成P88练习 4;P91习题3.4:4,7二、 补充: 1已知,求的最大值,并求相应的值.2已知,求的最大值,并求相应的值.3已知,求函数的最大值,并求相应的值.4已知求的最小值,并求相应的值.5已知, 且+ , 求的最小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 目送说课课件图片大全
- 面向低速水流能高效俘获的扑翼式水力发电机高效俘能技术研究
- 【2025年】浙江省绍兴市【辅警协警】笔试预测试题含答案
- 师德演讲课件
- 动物解剖生理试题(附答案)
- 呼吸机患者护理安全防范
- 糖尿病足病患者个案护理探讨
- 2025年四川省南溪县事业单位公开招聘辅警考试题带答案分析
- 新民法典基础知识在线测试题库(含参考答案)
- 工程部年度计划课件模板
- 【正版授权】 IEC 60512-2-5:2003 EN-FR Connectors for electronic equipment - Tests and measurements - Part 2-5: Electrical continuity and contact resistance tests - Test 2e: Contact disturbance
- 普通动物学(全套课件1069P)
- 2024合同作废说明范文
- SYT 6293-2021 勘探试油工作规范-PDF解密
- 四年级下册脱式计算300题及答案
- 加班时长汇总分析报告
- 黑龙江齐齐哈尔市克山县公安局招考聘用专业技术辅警10人笔试历年高频考点-难、易错点荟萃附答案带详解
- 研发人员的职业发展与晋升途径
- 手机卖场安全管理制度
- 信访工作课件
- 麦肯锡《业绩评估操作手册》
评论
0/150
提交评论