




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三、经典例题导讲例1已知,则 .错因:复合函数求导数计算不熟练,其与系数不一样也是一个复合的过程,有的同学忽视了,导致错解为:.正解:设,则.例2已知函数判断f(x)在x=1处是否可导?错解:。分析: 分段函数在“分界点”处的导数,须根据定义来判断是否可导 . 解: f(x)在x=1处不可导.注:,指逐渐减小趋近于0;,指逐渐增大趋近于0。点评:函数在某一点的导数,是一个极限值,即,x0,包括x0,与x0,因此,在判定分段函数在“分界点”处的导数是否存在时,要验证其左、右极限是否存在且相等,如果都存在且相等,才能判定这点存在导数,否则不存在导数.例3求在点和处的切线方程。错因:直接将,看作曲线上的点用导数求解。分析:点在函数的曲线上,因此过点的切线的斜率就是在处的函数值;点不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线解:即过点的切线的斜率为4,故切线为:设过点的切线的切点为,则切线的斜率为,又,故,。即切线的斜率为4或12,从而过点的切线为:点评: 要注意所给的点是否是切点若是,可以直接采用求导数的方法求;不是则需设出切点坐标例4求证:函数图象上的各点处切线的斜率小于1,并求出其斜率为0的切线方程.分析: 由导数的几何意义知,要证函数的图象上各点处切线的斜率都小于1,只要证它的导函数的函数值都小于1,因此,应先对函数求导后,再进行论证与求解. 解:(1),即对函数定义域内的任一,其导数值都小于,于是由导数的几何意义可知,函数图象上各点处切线的斜率都小于1.(2)令,得,当时,;当时,曲线的斜率为0的切线有两条,其切点分别为与,切线方程分别为或。点评: 在已知曲线 切线斜率为的情况下,要求其切线方程,需要求出切点,而切点的横坐标就是的导数值为时的解,即方程的解,将方程的解代入就可得切点的纵坐标,求出了切点坐标即可写出切线方程,要注意的是方程有多少个相异实根,则所求的切线就有多少条. 例5已知,函数,设,记曲线在点处的切线为 . (1)求 的方程; (2)设 与 轴交点为,求证: ;若,则分析:本题考查导数的几何意义,利用其求出切线斜率,导出切线方程 . 解:(1) 切线的方程为即.(2)依题意,切线方程中令y=0得, 由知,例6求抛物线 上的点到直线的最短距离. 分析:可设 为抛物线上任意一点,则可把点到直线的距离表示为自变量的函数,然后求函数最小值即可,另外,也可把直线向靠近抛物线方向平移,当直线与抛物线相切时的切点到直线的距离即为本题所求. 解:根据题意可知,与直线 xy2=0平行的抛物线y=x2的切线对应的切点到直线xy2=0的距离最短,设切点坐标为(),那么, 切点坐标为,切点到直线xy2=0的距离, 抛物线上的点到直线的最短距离为.三、经典例题导讲例1已知曲线及点,求过点的曲线的切线方程.错解:,过点的切线斜率,过点的曲线的切线方程为.错因:曲线在某点处的切线斜率是该曲线对应的函数在该点处的导数值,这是导数的几何意义.在此题中,点凑巧在曲线上,求过点的切线方程,却并非说切点就是点,上述解法对求过点的切线方程和求曲线在点处的切线方程,认识不到位,发生了混淆.正解:设过点的切线与曲线切于点,则过点的曲线的切线斜率 例2已知函数在上是减函数,求的取值范围.错解:在上是减函数,在上恒成立,对一切恒成立,即,.正解:,在上是减函数,在上恒成立,且,即且,.例3当 ,证明不等式.证明:,则,当时。在内是增函数,即,又,当时,在内是减函数,即,因此,当时,不等式成立.点评:由题意构造出两个函数,.利用导数求函数的单调区间,从而导出及是解决本题的关键.例4设工厂到铁路线的垂直距离为20km,垂足为B.铁路线上距离B为100km处有一原料供应站C,现要在铁路BC之间某处D修建一个原料中转车站,再由车站D向工厂修一条公路.如果已知每千米的铁路运费与公路运费之比为3:5,那么,D应选在何处,才能使原料供应站C运货到工厂A所需运费最省?解 : 设BD之间的距离为km,则|AD|=,|CD|=.如果公路运费为元/km,那么铁路运费为元/km.故从原料供应站C途经中转站D到工厂A所需总运费为:+,().对该式求导,得=+=,令,即得25=9(),解之得=15,=-15(不符合实际意义,舍去).且=15是函数在定义域内的唯一驻点,所以=15是函数的极小值点,而且也是函数的最小值点.由此可知,车站D建于B,C之间并且与B相距15km处时,运费最省.点评: 这是一道实际生活中的优化问题,建立的目标函数是一个复合函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧.而运用导数知识,求复合函数的最值就变得非常简单.一般情况下,对于实际生活中的优化问题,如果其目标函数为高次多项式函数、简单的分式函数简单的无理函数、简单的指数、对数函数,或它们的复合函数,均可用导数法求其最值.由此也可见,导数的引入,大大拓宽了中学数学知识在实际优化问题中的应用空间.例5函数,其中是的导函数.(1)对满足11的一切的值,都有0,求实数的取值范围;(2)设,当实数在什么范围内变化时,函数的图象与直线3只有一个公共点.解:(1)由题意 令,对,恒有,即 即解得故时,对满足11的一切的值,都有.(2)当时,的图象与直线只有一个公共点当时,列表: 极大极小又的值域是,且在上单调递增当时函数的图象与直线只有一个公共点.当时,恒有由题意得即解得综上,的取值范围是. 例6若电灯B可在桌面上一点O的垂线上移动,桌面上有与点O距离为的另一点A,问电灯与点0的距离怎样,可使点A处有最大的照度?(照度与成正比,与成反比)分析:如图,由光学知识,照度与成正比,与成反比,即(是与灯光强度有关的常数)要想点处有最大的照度,只需求的极值就可以了.解:设到的距离为,则,于是,.当时,即方程的根为(舍)与,在我们讨论的半
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年学历类自考专业(护理)外科护理学(一)-急救护理学参考题库含答案解析(5套)
- 科技券申请攻略:2025年资金申请策略与市场推广策略报告
- 2025年学历类自考专业(建筑工程)建筑结构试验-建筑施工(一)参考题库含答案解析(5套)
- 2025年学历类自考专业(建筑工程)建筑施工(一)-土力学及地基基础参考题库含答案解析(5套)
- 甲类药和乙类药
- 2025年学历类自考专业(小学教育)中外教育简史-美育基础参考题库含答案解析(5套)
- 2025年学历类自考专业(学前教育)学前特殊儿童教育-学前特殊儿童教育参考题库含答案解析(5套)
- 2025年学历类自考专业(学前教育)学前教育史-幼儿园课程参考题库含答案解析(5套)
- 拐杖的使用与护理
- 2025年学历类自考专业(学前教育)学前儿童语言教育-学前儿童语言教育参考题库含答案解析(5套)
- 中医培训课件:《气交灸的临床应用》
- 监理公司常用工具仪器技术手册
- 小学数学1-6年级公式大全(打印版)
- 华中科技大学青年长江学者答辩模板
- TCCSAS 007-2020化工企业变更管理实施规范
- 个人劳动合同书范本
- 手术室抢救药品应用
- 厦门国际港务股份有限公司薪酬考核体系及职业经理人机制、改革纲要汇报
- 幼儿园拍照培训
- T-CESA 1270.2-2023 信息技术 开源治理 第2部分:企业治理评估模型
- 软件对接方案
评论
0/150
提交评论