



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
更多高考数学资料下载地址: (完全免费)/soft/65/list65_1.html第10课时:第二章 函数函数的值域一课题:函数的值域二教学目标:理解函数值域的意义;掌握常见题型求值域的方法,了解函数值域的一些应用三教学重点:求函数的值域四教学过程:(一)主要知识:1函数的值域的定义;2确定函数的值域的原则;3求函数的值域的方法(二)主要方法(范例分析以后由学生归纳): 求函数的值域的方法常用的有:直接法,配方法,判别式法,基本不等式法,逆求法(反函数法),换元法,图像法,利用函数的单调性、奇偶性求函数的值域等(三)例题分析:例1求下列函数的值域:(1); (2); (3);(4); (5); (6);(7); (8); (9)解:(1)(一)公式法(略)(二)(配方法),的值域为改题:求函数,的值域解:(利用函数的单调性)函数在上单调增,当时,原函数有最小值为;当时,原函数有最大值为函数,的值域为(2)求复合函数的值域:设(),则原函数可化为又,故,的值域为(3)(法一)反函数法:的反函数为,其定义域为,原函数的值域为(法二)分离变量法:,函数的值域为(4)换元法(代数换元法):设,则,原函数可化为,原函数值域为说明:总结型值域,变形:或(5)三角换元法:,设,则,原函数的值域为(6)数形结合法:,函数值域为(7)判别式法:恒成立,函数的定义域为由得: 当即时,即,当即时,时方程恒有实根,且,原函数的值域为(8),当且仅当时,即时等号成立,原函数的值域为(9)(法一)方程法:原函数可化为:,(其中),原函数的值域为(法二)数形结合法:可看作求点与圆上的点的连线的斜率的范围,解略例2若关于的方程有实数根,求实数的取值范围解:原方程可化为,令,则,又在区间上是减函数,即,故实数的取值范围为:例3(高考计划考点9,智能训练16)某化妆品生产企业为了占有更多的市场份额,拟在2003年度进行一系列的促销活动经过市场调查和测算,化妆品的年销量万件与年促销费用万元之间满足:与成反比例;如果不搞促销活动,化妆品的年销量只能是1万件已知2003年,生产化妆品的固定投入为3万元,每生产1万件化妆品需再投入32万元当将每件化妆品的售价定为“年平均每件成本的150”与“年平均每件所占促销费的一半”之和,则当年产销量相等(1)将2003年的年利润万元表示为年促销费万元的函数;(2)该企业2003年的促销费投入多少万元时,企业的年利润最大?(注:利润收入生产成本促销费)解:(1)由题设知:,且时,即,年生产成本为万元,年收入为年利润,(2)由(1)得,当且仅当,即时,有最大值当促销费定为万元时,年该化妆品企业获得最大利润(四)巩固练习:1函数的值域为2若函数在上的最大值与最小值之差为2,则五课后作业:高考计划考点1,智能训练3,4,9,12,13,14高考资源网()来源:高考资
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 键盘使用课件
- 年产磁芯30000万只改扩建项目环评报告表
- 2025年五邑大学纺织试卷及答案
- 保税科技外服公司资产评估报告
- 2025年高化期末考试试题及答案
- 深度解读:2025年智能快递驿站无人化服务技术发展现状
- 通信工程本科-培养方案(3篇)
- 2025【简易酒店劳务合同范本】简化版的劳务合同标准模板
- 2025年物业绿化员考试题及答案
- 河堤工程施工组织方案(3篇)
- 《人工智能基础与应用-(AIGC实战 慕课版)》全套教学课件
- 医院 查对制度
- 2025年护士执业资格考试题库(社区护理学专项)-社区护理护理法律法规试题
- 消化道出血护理查房课件(完整版)
- 2024年同等学力申硕《英语》试题真题及答案
- 2024-2025学年重庆市九龙坡区五年级(上)期末数学试卷(含答案)
- 2024外墙喷涂机器人
- 《管理咨询实践》课件
- 《eva培训资料》课件
- 第四届全国冶金矿山行业职业技能竞赛(电气设备点检员赛项)理论参考试题库(含答案)
- 酒店保洁员培训
评论
0/150
提交评论