




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04 导数及其应用 (十七)导数及其应用1导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2导数的运算(1)能根据导数定义求函数y=C,(C为常数),的导数.(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.常见基本初等函数的导数公式:常用的导数运算法则:法则1:法则2:法则3:3导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4生活中的优化问题会利用导数解决某些实际问题.5定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.(2)了解微积分基本定理的含义.与2017年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在2018年的高考中预计仍会以“一小一大”的格局呈现,“一小”即以选择题或填空题的形式考查导数的几何意义和导数在研究函数问题中的直接应用,或以定积分的简单应用为主,难度中等;“一大”即以压轴题的形式呈现,仍会以导数的应用为主,主要考查导数、含参不等式、方程、探索性等方面的综合应用,难度较大.考向一 利用导数研究函数的单调性样题1 (2017新课标全国理科)已知函数.(1)讨论的单调性;(2)若有两个零点,求a的取值范围. 考向二 利用导数研究函数的极值问题样题2(2017新课标全国理科)若是函数的极值点,则的极小值为A BC D1【答案】A【解析】由题可得,因为,所以,故,令,解得或,所以在上单调递增,在上单调递减,所以的极小值为,故选A【名师点睛】(1)可导函数yf(x)在点x0处取得极值的充要条件是f (x0)0,且在x0左侧与右侧f (x)的符号不同;(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值样题3(2017新课标全国理科)已知函数,且(1)求;(2)证明:存在唯一的极大值点,且(2)由(1)知 ,设,则当时,;当时,所以在上单调递减,在上单调递增又,所以在有唯一零点,在有唯一零点1,且当时,;当时,;当时,因为,所以是的唯一极大值点由得,故由得因为是在(0,1)的最大值点,由,得所以【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用考向三 导数与不等式恒成立问题样题4 已知定义在上的奇函数满足:当时,.若不等式对任意实数恒成立,则实数的取值范围是A BC D【答案】A先求出时的单调性,再根据奇函数在对称区间上的单调性相同可得出在上单调递增,可得到在上恒成立,再利用分离参数的方法,可得到,进而利用求导的方法求出的最小值即可.此题判断出在上的单调性是解题的关键样题5 已知函数,函数在点处的切线与直线平行(1)讨论函数的单调性;(2)当时,不等式恒成立,求实数的值或取值范围(2)令,则根据题意,当时,恒成立,所以. 当时,时,恒成立,所以在上是增函数,且,所以不符合题意. 当时,时,恒成立,所以在上是增函数,且所以不符合题意. 当时,时,恒有,故在上是减函数,于是“对任意都成立”的充要条件是,即,解得,故取, 综上,考向四 定积分及其应用样题6 【答案】0【解析】.样题7 执行如图所示的程序框图,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 区块链技术助力企业透明化经营与决策
- 医疗商业地产的未来趋势与新机遇
- 冷轧厂百日安全竞赛活动总结模版
- 企业数字化转型中如何利用区块链提高内部管理效率
- 医疗旅游目的地医院的营销策略
- 医疗信息化对医药企业的影响
- 临时维修安全合同范例
- 东城区家具运输合同范例
- 买车预定合同范例
- 主播竞技合同范例
- 【S】幼儿绘本故事《三只小猪》课件
- 【教师共享】《羽毛球》教学评价及评价建议
- 乐高EV3初级课程课件 - 仿生蜘蛛
- DB13-T 5742-2023醇基燃料使用安全规范
- 尾矿库安全生产风险监测预警系统运行管理办法
- 特殊教育:康复训练课程标准(年版)
- 国开电大《小学数学教学研究》形考任务2答案
- 南京秦淮外国语学校新初一分班英语试卷含答案
- 七年级下地理试题
- 宁夏水利建筑工程预算定额
- 山东省普通高中学生发展报告
评论
0/150
提交评论