分子克隆实验室仪器.doc_第1页
分子克隆实验室仪器.doc_第2页
分子克隆实验室仪器.doc_第3页
分子克隆实验室仪器.doc_第4页
分子克隆实验室仪器.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

各种仪器生物安全柜*二级生物安全柜主要保护实验操作者。 在操作时,室内空气被抽入前面的格栅,产生一个空气幕,防止有生物危险的悬浮微粒散入室内。 *二级生物安全柜保护你的实验样品。 层流的,HEPA过滤的空气向下,通过工作面,防止室内空气进入,防止你的样品存在交叉污染。 *二级生物安全柜保护你的实验室环境。 在空气离开柜前。必须通过一个排气HEPA滤膜。 LABCONCO的 LOGIC 型二级生物安全柜可以保持正常稳定的进气流速105fpm,通过一个倾角为10o的开放式吊窗设计从而彻底解决了操作过程中的反光问题,是设计上的一大突破。在操作中,室内空气被抽入前面的格栅。在工作表面下的压力通风系统里,空气是未经过滤的室内气和刚刚流过作业区的气体的混合体。这些已污染的空气被风机抽入柜子背面的通风系统里,在那里大约70%的气体再循环,通过HEPA过滤返回作业区。剩下的污染气经过排气HEPA滤膜排出,不会对周边环境产生污染。 即使是NSF49号国际标准也未要求这样的Type 型生物安全柜具有额外安全措施,但所有LABCONCO生物安全柜已具有污染空气的正压力管道必须围绕以负压通风系统。如果有孔或泄露发生,负压将再次捕捉污染空气,迫其通过HEPA滤膜,防止其弥散入室内。LOGIC型二级生物安全柜可以在通过HEPA滤膜后直接排入实验室,或者通过选配的盖式排气连接配件排入排气系统。二氧化碳培养箱广泛应用于医学、免疫学、遗传学、微生物、农业科学、药物学的研究和生产,已经成为上述领域实验室最普遍使用的常规仪器之一,其通过在培养箱箱体内模拟形成一个类似细胞/组织在生物体内的生长环境如恒定的酸碱度(pH值:7.2-7.4)、稳定的温度(37C)、较高的相对湿度(95%)、稳定的CO2水平(5%),来对细胞/组织进行体外培养的一种装置。全世界的用户对二氧化碳培养箱都有两条最基本的要求,一是要求二氧化碳培养箱能够对温度、二氧化碳浓度和湿度提供最精确稳定的控制,以便于其研究工作的进展;二是要求二氧化碳培养箱能够对培养箱内的微生物污染进行有效的防范,并且能够定期消除污染,以保护研究成果,防止样品损失。所以,选购二氧化碳培养箱的老师最关心的当然就是其高可靠性、对污染的防范和控制及使用方便。一、温度控制 1. 加热方式:气套式加热和水套式加热,两种加热系统都是精确和可靠的,同时它们都有着各自的优点和缺点。水套式加热是通过一个独立的水套层包围内部的箱体来维持温度恒定的,其优点:水是一种很好的绝热物质,当遇到断电的时候,水套式系统就可以比较长时间的保持培养箱内的温度准确性和稳定性(维持温度恒定的时间是气套式系统的34倍),有利于实验环境不太稳定(如有用电限制,或者经常停电)并需要保持长时间稳定的培养条件的用户选用。气套式加热是通过遍布箱体气套层内的加热器直接对内箱体进行加热的,又叫六面直接加热。气套式与水套式相比,具有加热快,温度的恢复比水套式培养箱迅速的特点,特别有利于短期培养以及需要箱门频繁开关的培养。此外,对于使用者来说气套式设计比水套式更简单化(水套式需要对水箱进行加水、清空和清洗,并要经常监控水箱运作的情况)。2. 温控系统:保持培养箱内恒定的温度是维持细胞健康生长的重要因素,因此精确可靠的温控系统是培养箱不可或缺的重要部分。为了使培养箱更加稳定的工作,我们推荐用户选用具备相互独立三重温度控制功能的二氧化碳培养箱,即箱内温度控制、超温报警控制和环境温度监控。目前市面上拥有此功能的二氧化碳培养箱极少,而Heal Force(力康)牌HF90气套式二氧化碳培养箱能够做到。HF90的独立箱内温度控制系统保证培养箱内温度能够精确的稳定在用户的设定值上,并且主加热系统具有正常/缓慢两种加热模式,更加耐受室温较高的环境使用,我们知道培养箱的最低工作温度一般是高于室温5C,如果没有缓慢加热模式就非常容易在夏天高温天气(如室温30C左右时)产生箱内温度过高;HF90的独立超温报警功能能够快速准确的在培养箱内温度高于培养温度1C时,切断培养箱的主加热系统,同时声光报警;HF90的环境温度监控可以根据环境温度的变化自动调节培养箱外门辅助加热系统的功率,达到精确控制箱体内温度的目的。HF90 气套式高温湿热灭菌CO2培养箱正面图3. 温度均一性:二氧化碳培养箱箱体内的温度均一性也是用户需要考虑的主要因素,一般在箱体内配备了风扇以及风道的培养箱的均一度要好很多,同时此装置还有助于箱内温度、CO2浓度和相对湿度的迅速恢复。当然,风扇/风道的优化也是同等重要的,HF90二氧化碳培养箱独特设计的大直径风扇和循环风道能够保证箱体内温度和二氧化碳浓度的均一性。大直径风扇相比其他品牌培养箱的风扇,能够在低转速(低风速)时产生大的空气循环流量,在达到均一性目的的同时,降低风速、减少箱内震动。降低风速、减少震动同时也就大大提高了箱内细胞培养的成功率。二、二氧化碳浓度控制1. 两种控制系统:红外传感器(IR)或热导传感器(TCD)进行测量。两种传感器都是准确的,但都各有优缺点。热导传感器监控CO2浓度的工作原理是基于对内腔空气热导率的连续测量,输入CO2气体的低热导率会使腔内空气的热导率发生变化,这样就会产生一个与CO2浓度直接成正比的电信号。红外传感器(IR)它是通过一个光学传感器来检测CO2水平的。IR系统包括一个红外发射器和一个传感器,当箱体内的CO2吸收了发射器发射的部分红外线之后,传感器就可以检测出红外线的减少量,而被吸收红外线的量正好对应于箱体内CO2的水平,从而可以得出箱体内CO2的浓度。由于IR系统是通过红外线减少来确定箱内CO2浓度,而箱体内颗粒物能够反射或部分吸收红外线,使得IR系统对箱体内颗粒物的多少比较敏感,因此IR传感器应用在含HEPA高效空气过滤器的培养箱内比较合适,如Heal Force(力康)HF160W水套式培养箱就是采用的HEPA过滤器配合高精度IR传感器的配置;而HF90气套式培养箱采用的是高精度TCD传感器。2. CO2测量系统自动校准功能:无论哪种CO2测量系统在使用一段时间后都会产生漂移,而产生漂移后直接会导致箱体内二氧化碳浓度不能稳定在我们的设定值,致使培养失败,所以我们在这里强烈建议用户在选购培养箱时必须要选择带有CO2测量系统自动校准功能的培养箱。目前市面上拥有此功能的二氧化碳培养箱极少,而Heal Force(力康)牌HF90气套式二氧化碳培养箱能够做到。HF90先进的“AUTO-START”自动启动功能可以将培养箱自动调节到您所设定的各项工作参数,并使CO2浓度处于最精确和稳定状态,保证CO2浓度不产生正负漂移。3. CO2浓度均一性:此点与温度均一性的要求类似,在此就不做赘述。三、相对湿度箱内湿度对于培养工作来说是一项非常重要然而又经常被忽略的因素。维持足够的湿度水平并且要有足够快的湿度恢复速度(如在开关门后)才能保证不会由于过度干燥而导致培养失败。目前大多数的二氧化碳培养箱是通过增湿盘的蒸发作用产生湿气的(其产生的相对湿度水平可达95%左右,但开门后湿度恢复速度很慢)。我们在此建议用户在选购二氧化碳培养箱的时候尽量选择湿度蒸发面积大的培养箱,因为我们知道湿度蒸发面积越大,越容易达到最大相对饱和湿度并且开关门后的湿度恢复的时间越短。Heal Force(力康)牌HF90二氧化碳培养箱的整个内部箱底被设计成为一个水库式底盘,这样可以做到蒸发面积最大化,增强蒸发作用,水库式底盘设计使培养箱内能快速达到饱和湿度状态,且湿度恢复速度要远远高于采用水盘增湿的二氧化碳培养箱。CO2培养箱的湿度恢复时间比较图四、防污染设计和消毒灭菌系统污染是导致细胞培养失败的一个主要因素,因而,二氧化碳培养箱的制造商们设计了多种不同的装置去减少和防止污染的发生,其主要途径都是尽量减少微生物可以生长的区域和表面,并结合自动排除污染装置来有效防止污染的产生。例如,鉴于CO2培养箱在使用过程中有时会伴有霉菌生长,为确保培养箱免受污染并且保证仪器箱体内的生物清洁性,相继问世了多种消毒灭菌方式,如带有紫外消毒功能的CO2培养箱(如Heal Force 品牌的HF151UV和HF212UV二氧化碳培养箱);还有的设计生产了HEPA过滤器能过滤培养箱内空气,可过滤除去99.97%的0.3微米以上的颗粒(如Heal Force 品牌的HF160W二氧化碳培养箱);此外,还开发设计了能使箱内达到高温湿热的环境从而杀死污染微生物,达到消毒灭菌目的的培养箱(如Heal Force 品牌的HF90和HF240二氧化碳培养箱)。这些装置对于细胞培养来说是必不可少,但选择何种清洁装置呢?首先,我们考虑的当然是各种方式的灭菌能力,紫外消毒能力是与紫外灯距离目标的距离的二次方成反比,距离越远,消毒能力越差,所以紫外消毒方式有其局限性,难以达到彻底灭菌的要求;HEPA过滤器由于受到过滤膜孔径的影响,无法去除病毒和一些微小细菌,也有其局限性;相比较而言,高温消毒是目前比较有效消毒灭菌的方法,高温消毒又分为两类,一是传统的高温干热消毒,另一种是先进的高温湿热灭菌。接下来我们重点说一下高温干热和高温湿热两种方法的优劣。高温湿热由于蒸汽潜热大,穿透力强,容易使蛋白质变性或凝固,因此该法的灭菌效率比干热灭菌法高。其原因有三:蛋白质凝固所需的温度与其含水量有关,含水量愈大,发生凝固所需的温度愈低。湿热灭菌的菌体蛋白质吸收水分,所以较同一温度的干热空气中易于凝固。湿热灭菌过程中蒸汽放出大量潜热,加速提高湿度。因而湿热灭菌比干热所需温度低,如在同一温度下,则湿热灭菌所需时间比干热短。湿热的穿透力比干热大,使其深部也能达到灭菌温度,故湿热比干热收效好一些。所以高温消毒并不是简单的看消毒温度,主要是看是否湿热消毒。另外,从使用角度看,湿热消毒一般控制在90C就能达到很彻底的消毒效果,整个消毒过程中培养箱内的所有附件都不用取出,可以全部进行消毒;而干热消毒为了达到较好的效果,温度一般都在100C以上,在这种温度下消毒培养箱内的传感器、HEPA过滤器等都要在消毒过程中取出,等消毒结束再装上,这样即麻烦,附件又不能同时消毒,而且增加二次污染的几率,再者要达到100C以上的高温,培养箱的加热系统的电热丝必然要加粗,这会导致培养箱的温度控制难度增加,均一性变差。所以我们建议用户在选购二氧化碳培养箱时选择含高温湿热灭菌方式的培养箱。目前市面上有高温湿热灭菌功能的二氧化碳培养箱极少,而Heal Force(力康)牌HF90气套式二氧化碳培养箱能够做到。HF90培养箱包含90C高温湿热灭菌系统,同时配合其电解抛光不锈钢圆边圆角内腔体设计、箱内冷凝水控制系统、CO2进气口HEPA过滤、外门开关检测系统、三扇内玻璃小门等防污染设计,真真正正是一款理想的二氧化碳培养箱。HF90 CO2培养箱配备3扇小门五、其它因素二氧化碳培养箱的容积也是一个不可忽略的因素,买小了不够用,大了又浪费又占地方。二氧化碳培养箱的可选容积非常广,而且每种类型又有不同的容积可选。此时,就需要您在选购前对所需培养箱容积的范围有一个比较准确的了解,并在此基础上多预留一点空间,以保证不时之需。此外,每一个使用者都希望所用的仪器能够方便好用,微处理控制系统和其它各种功能附件(如高温自动调节和警报装置、CO2警报装置、密码保护设置、自动校准系统、LCD显示系统等等)的运用,就使得二氧化碳培养箱的操作和控制都非常的简便。不同的微处理系统虽然名字不相同,但是其原理与控制效果则无甚区别,选购时不必太在意它们名字上的区别,关键是要自己觉得使用起来方便,容易操作。流式细胞仪可同时进行多参数测量,信息主要来自特异性荧光信号及非荧光散射信号。测量是在测量区进行的,所谓测量区就是照射激光束和喷出喷孔的液流束垂直相交点。液流中央的单个细胞通过测量区时,受到激光照射会向立体角为2的整个空间散射光线,散射光的波长和入射光的波长相同。散射光的强度及其空间分布与细胞的大小、形态、质膜和细胞内部结构密切相关,因为这些生物学参数又和细胞对光线的反射、折射等光学特性有关。未遭受任何损坏的细胞对光线都具有特征性的散射,因此可利用不同的散射光信号对不经染色活细胞进行分析和分选。经过固定的和染色处理的细胞由于光学性质的改变,其散射光信号当然不同于活细胞。散射光不仅与作为散射中心的细胞的参数相关,还跟散射角、及收集散射光线的立体角等非生物因素有关。 在流式细胞术测量中,常用的是两种散射方向的散射光测量:前向角(即0角)散射(FSC);侧向散射(SSC),又称90角散射。这时所说的角度指的是激光束照射方向与收集散射光信号的光电倍增管轴向方向之间大致所成的角度。一般说来,前向角散射光的强度与细胞的大小有关,对同种细胞群体随着细胞截面积的增大而增大;对球形活细胞经实验表明在小立体角范围内基本上和截面积大小成线性关系;对于形状复杂具有取向性的细胞则可能差异很大,尤其需要注意。侧向散射光的测量主要用来获取有关细胞内部精细结构的颗粒性质的有关信息。侧向散射光虽然也与细胞的形状和大小有关,但它对细胞膜、胞质、核膜的折射率更为敏感,也能对细胞质内较大颗粒给出灵敏反映。 在实际使用中,仪器首先要对光散射信号进行测量。当光散射分析与荧光探针联合使用时,可鉴别出样品中被染色和未被染色细胞。光散射测量最有效的用途是从非均一的群体中鉴别出某些亚群。 荧光信号主要包括两部分:自发荧光,即不经荧光染色细胞内部的荧光分子经光照射后所发出的荧光;特征荧光,即由细胞经染色结合上的荧光染料受光照而发出的荧光,其荧光强度较弱,波长也与照射激光不同。自发荧光信号为噪声信号,在多数情况下会干扰对特异荧光信号的分辨和测量。在免疫细胞化学等测量中,对于结合水平不高的荧光抗体来说,如何提高信噪比是个关键。一般说来,细胞成分中能够产生的自发荧光的分子(例核黄素、细胞色素等)的含量越高,自发荧光越强;培养细胞中死细胞/活细胞比例越高,自发荧光越强;细胞样品中所含亮细胞的比例越高,自发荧光越强。 减少自发荧光干扰、提高信噪比的主要措施是:尽量选用较亮的荧光染料;选用适宜的激光和滤片光学系统;采用电子补偿电路,将自发荧光的本底贡献予以补偿。 样品分选原理流式细胞仪的分选功能是由细胞分选器来完成的。总的过程是:由喷嘴射出的液柱被分割成一连串的小水滴,根据选定的某个参数由逻辑电路判明是否将被分选,而后由充电电路对选定细胞液滴充电,带电液滴携带细胞通过静电场而发生偏转,落入收集器中;其它液体被当作废液抽吸掉,某些类型的仪器也有采用捕获管来进行分选的。 稳定的小液滴是由流动室上的压电晶体在几十KHz的电信号作用下发生振动而迫使液流均匀断裂而形成的。一般液滴间距约距约数百m。实验经验公式f=v/4.5d给出形成稳定水滴的振荡信号频率。其中v是液流速度,d为喷孔直径。由此可知使用不同孔径的喷孔及改变液流速度,可能会改变分选效果。使分选的含细胞液滴在静电场中的偏转是由充电电路和偏转板共同完成的。充电电压一般选+150V,或-150V;偏转板间的电位差为数千伏。充电电路中的充电脉冲发生器是由逻辑电路控制的,因此从参数测定经逻辑选择再到脉冲充电需要一段延迟时间,一般为数十ms。精确测定延迟时间是决定分选质量的关键,仪器多采用移位寄存器数字电路来产生延迟。可根据具体要求予以适当调整。 (50)数据处理原理:FCM的数据处理主要包括数据的显示和分析,至于对仪器给出的结果如何解释则随所要解决的具体问题而定。 数据显示:FCM的数据显示方式包括单参数直方图、二维点图、二维等高图、假三维图和列表模式等。 直方图是一维数据用作最多的图形显示形式,既可用于定性分析,又可用于定量分析,形同一般XY平面描图仪给出的曲线。根据选择放大器类型不同,横座标可以是线性标度或对数标度,用“道数”来表示,实质上是所测的荧光或散射光的强度。纵座标一般表示的是细胞的相对数。图10-2给出的是直方图形式。只能显示一个参数与细胞之间的关系是它的局限性。 二维点图能够显示两个独立参数与细胞相对数之间的关系。横座标和纵座标分别为与细胞有关的两个独立参数,平面上每一个点表示同时具有相应座标植的细胞存在(图10-3)。可以由二维点图得到两个一维直方图,但是由于兼并现象存在,二维点图的信息量要大于二个一维直方图的信息量。所谓兼并就是说多个细胞具有相同的二维座标在图上只表现为一个点,这样对细胞点密集的地方就难于显示它的精细结构。 图10-2直方图 图10-3二维点图 二维等高图类似于地图上的等高线表示法。它是为了克服二维点图的不足而设置的显示方法。等高图上每一条连续曲线上具有相同的细胞相对或绝对数,即“等高”。曲线层次越高所代表的细胞数愈多。一般层次所表示的细胞数间隔是相等的,因此等高线越密集则表示变化率越大,等高线越疏则表示变化平衡。图10-4给出了二维等高图的样式。 假三维图是利用计算机技术对二维等高图的一种视觉直观的表现方法。它把原二维图中的隐座标细胞数同时显现,但参数维图可以通过旋转、倾斜等操作,以便多方位的观察“山峰”和“谷地”的结构和细节,这无疑是有助于对数据进行分析的。图10-5为假三维图的示意图。 图10-4二维等高图 图10-5假三维图 列表模式其实只是多参数数据文件的一种计算机存贮方式,三个以上的参数数据显示是用多个直方图、二维图和假三维图来完成的。可用ListMode中的特殊技术,开窗或用游标调出相关部分再改变维数进行显示。例如,“一调二”就是在一维图上调出二维图来;“二调一”就是从二维图中调出一维图来。图10-6给出了从二维图等高图中调出相应窗口的直方图的示意图。 图10-6从二维图设窗调出直方图示意 上面简要地介绍了几种数据显示形式,在实际应用中,可根据需要选择匹配,以便了解和获得尽可能多的有用信息。 数据分析:数据分析的方法总的可分为参数方法和非参数方法两大类。当被检测的生物学系统能够用某种数学模型技术时则多使用参数方法。数学模型可以是一个方程或方程组,方程的参数产生所需要的信息来自所测的数据。例如在测定老鼠精子的DNA含量时,可以获取细胞频数的尖锐波形分布。如果采用正态分布函数来描述这些数据,则参数即为面积、平均值和标准偏差。方程的数据拟合则通常使用最小二乘法。而非参数分析法对测量得到的分布形状不需要做任何假设,即采用无设定参数分析法。分析程序可以很简单,只需要直观观测频数分布;也可能很复杂,要对两个或多个直方图逐道地进行比较。 逐点描图(或用手工,或用描图仪、计算机系统)是大家常用的数据分析的重要手段。我们常可以用来了解数据的特性、寻找那些不曾预料的特异征兆、选择统计分析的模型、显示最终结果等。事实上,不经过先对数据进行直观观察分析就决不应该对这批数据进行数值分析。从这一点来看,非参数分析是参数分析的基础。 逐道比较工作量较大,但用直观法很容易发现明显的差异,特别是对照组和测试组。考虑到FCM的可靠性,要注意到对每组测量,都要有对照组,对照组可以是空白对照组、阴性对照组、或零时刻对照组等,具体设置应根据整体实验要求而定。对照组和测试组的逐道比较往往可以减少许多不必要的误差和错误解释。顺便指出,进行比较时对曲线的总细胞数进行归一化处理,甚至对两条曲线逐道相减而得到“差结果曲线”往往是适宜的。 因为数据分析往往和结果解释关系十分密切,也就是说和生物学背景相关,因此具体的分析法和原理将在后面结合实例再介绍。离心机离心是蛋白质、酶、核酸及细胞亚组分分离的最常用的方法之一,也是生化实验室中常用的分离、纯化或澄清的方法。尤其是超速冷冻离心已经成为研究生物大分子实验室中的常用技术方法。 离心机(centrifuge)是实施离心技术的装置。离心机的种类很多,按照使用目的,可分为两类,即制备型离心机和分析型离心机。前者主要用于分离生物材料,每次分离样品的容量比较大,后者则主要用于研究纯品大分子物质,包括某些颗粒体如核蛋白体等物质的性质,每次分析的样品容量很小,根据待测物质在离心场中的行为(可用离心机中的光学系统连续地监测),能推断其纯度、形状和相对分子质量等性质。这两类离心机由于用途不同,故其主要结构也有差异。离心原理将样品放入离心机转头的离心管内,离心机驱动时,样品液就随离心管做匀速圆周运动,于是就产生了一个向外的离心力。由于不同颗粒的质量、密度、大小及形状等彼此各不相同,在同一固定大小的离心场中沉降速度也就不相同,由此便可以得到相互间的分离。 离心力和相对离心力:溶液中的固相颗粒做圆周运动时产生一个向外离心力,其定义为:F = m2r式中: F 为离心力的强度; m 为沉降颗粒的有效质量; 为离心转子转动的角速度,其单位为rad/s;r 为离心半径(cm),即转子中心轴到沉降颗粒之间的距离。很显然,离心力随着转速和颗粒质量的提高而加大,而随着离心半径的减小而降低。目前离心力通常以相对离心力Fcf 表示,即离心力F 的大小相对于地球引力(G)的多少倍,单位为g,其计算公式如下:Fcf = 1.119105(h)2rg可以看出,在同一转速下,由于f 的不同,Fcf相差会很大,实际应用时一般取平均值。在离心实验的报告中,Fcf、r 平均、离心时间t 和液相介质等条件都应表示出来,因为它们都与样品的沉降速度有直接的联系。显然Fcf是一个只与离心机相关的参数,而与样品并无直接的关系。 沉降速度与沉降系数一个颗粒要沉降,它必须置换出位于它下方等体积的溶液,这只有当颗粒的质量大于被置换出的液体的质量时才能通过离心的手段达到,否则,在离心过程中颗粒将发生向上漂浮,而不是下沉。当颗粒在运动时,不论方向如何,它都要穿过溶剂分子,所产生的摩擦力总是与颗粒运动的方向相反。 摩擦力的大小与颗粒的运动速度成正比,并且受颗粒的大小、形状及介质性质的影响:式中:f 为颗粒在济剂中的摩擦系数与颗粒的大小、形状及介质性质相关;v 为颗粒的沉降速度。由于离心力的存在,颗粒将加速运动直到摩擦力与离心力相等。在这种情况下,颗粒所受到的净作用力为零,颗粒将以最大速度运动。式中 Mp 和M s 分别为颗粒的质量及等体积的溶剂的质量。上式中的Mp 和M s 很难确定,为了建立分子大小与沉降系数之间的关系,引入了沉降系数这一新的概念。沉降系数定义为沉降速度与离心力的比率或单位离心场中颗粒的沉降速度,它以svedberg单位计算,1S110-13 s。例如,核糖核酸酶A 的沉降系数为18510-13 s,即可记作185S。近年来,在生物化学、分子生物学及生物工程等书刊文献中,对于某些大分子化合物,当它们的详细结构和分子量不很清楚时,常常用沉降系数这个概念去描述它们的大小。如核糖体RNA(rRNA)有30 s 亚基和50s 亚基,这里的s 就是沉降系数,现在更多地用于生物大分子的分类,特别是核酸。 离心技术的类型最大速度方法1、移动界面超速离心法含几个组分的样品在足够高的离心场中离心时,每种颗粒都达到其最大沉降速度,这时样品开始分离。离心管的上层逐渐形成透明的上清液,并形成对应于样品各组分的一系列浓度界面,界面的移动相对于每种组分来说是特征的。虽然利用这种方法不一定能实现组分的纯化分离,但可以通过监测界面的移动来测定各组分的沉降速度。要想实现组分间的分离,必须在所需样品沉降之后停止离心过程。沉积的样品再悬浮到新的溶剂中,并以较低的速度离心使大颗粒的污染物沉降,而被纯化的样品留在溶液中,经过反复多次地离心才能得到纯的样品,这种方法就叫差示沉降离心法,它对细胞组分间的分离非常有用。也可以通过逐渐增大转速的方法实现不同组分间的分离,细胞匀浆差示分离(a) 细胞匀浆;(b)细胞碎片;(c)线粒体、过氧化物酶体、溶酶体;(d)微粒体、核糖体;(e)细胞液;(可溶性蛋白质及小分子生物)2、移动区带超速离心法差示离心法离心前各组分均匀分布在整个溶液中,所以分离一般不理想,而移动区带超速离心法是一种密度梯度(Dens 心Gradient)离心技术,在离心之前离心管中溶液的密度不同(从上到下密度增大),梯度介质中最大密度应小于样品物质的最小密度,其特点是物质的分离取决于样品物质颗粒的质量即样品物质的沉降系数,而不是取决于样品物质的密度,因而适合于分离密度相近而大小和形状不同的物质,这属于一种非平衡态分离法。当样品物质轻轻地铺在密度梯度介质的液面上,起动离心机,在离心力的作用下,一定时间后便形成不同物质的区带。当继续离心时每个区带会逐一达到管底,所以,在沉降最快的区带到达管底之前要停止离心,并将每个区带分部收集。最常用的制备密度梯度的化合物有蔗糖、甘油、氯化铯和硫酸铯等。 等密度方法等密度离心法也叫沉降平衡法。所谓等密度是指样品密度与介质的密度相等,实际上是在梯度密度介质中进行的。该技术的特点是沉降分离与样品物质的大小和形状无关,而取决于样品物质的密度。这种方法非常类似于电泳中的PH 梯度等电聚焦方法,在离心时,颗粒依其密度的不同沉降或向上漂浮,直到移动到与自身的密度相同的溶剂梯度中为止,其结果是依样品物质密度的不同在梯度溶剂中形成一个个区带。在实验方法上可以采用预先制备密度梯度溶液的方法,一般先制备两种储备液,它们的浓度决定最终所形成梯度溶液的极限。可以通过分步减小密度,从离心管底部到上部逐渐加液的方式形成不连续梯度溶液,也可以通过一个梯度混合器产生连续梯度密度。储备液一般使用两种密度的蔗糖溶液或两种密度的氯化铯溶液来制备。样品一般铺在溶液的表面,然后开始离心。在实验方法上也可以采用平衡密度梯度法,在这种离心法中,介质的梯度不是预先配制,而是在离心过程中,由于离心力的作用而逐渐形成。样品物质和氯化铯的浓盐溶液充分混合均匀,离心开始之后,铯盐由于离心力的作用,自离心管口至离心管底形成连续递增的密度梯度。生物样品中不同组分物质在离心过程中沉降或上浮以寻找与自身密度相同的溶液密度梯度区带,不同的物质最终到达相应的区带,从而实现分离。这种方法依赖于在离心场的作用下低分子量的铯盐密度梯度的形成,一般需要长时间的离心(23天)。显然,样品物质的密度应介于介质梯度中最大和最小密度之间,否则,样品将沉到离心管的底部或漂浮到溶液的顶层。无论是采用哪种操作方式,最终都要分别收集处在每一区带的样品组分,一般可采用下述两种方法实现:穿刺法这是方便而又理想的部分收集方法。用一根金属空心针从离心管底刺人管内,不同区带内的组分自下而上地先后从针管内分别流出,然后用部分收集器分别收集。取代法在离心管口加一个带有收集导管的塞子,塞子上同时装有一根输液导管插入离心管的管底,从输液管中注入高密度的离心介质其密度高于离心管中所形成的最大密度。当取代液不断注入时离心管中的溶液逐渐上升,并不断从收集导管中流出,然后用部分收集器分别收集。 离心机类型通常所使用的离心机根据转子转速大小的不同可分为普通离心机、高速离心机和超速离心机三类。普通离心机一般来说,最大转速不超过6000rmin 者属普通离心机;如国产的801型,LXJ型等。离心机转速与相对离心力的测算,如图237。 普通离心机转子在室温下运转,转子室内的温度一般无法控制,转子有固定角度式和悬挂吊格式。离心时形成的固体沉淀层叫压板,液相部分称之为上层清液。用倾注法分离两相。高速离心机转速可以达到25000rmin 者为高速离心机;转速在25000rmin 以上者为超速离心机。高速离心机一般带有制冷装置,因而转子室内的温度可以控制。转子室内的温度一般控制在4为宜。其中大容量连续流动离心机的主要用途是从大量培养物(5500 L)中收集酵母及细菌等。另一类是低容量冰冻离心机,型号甚多,其最大容量可达3L。这类离心机有各种内部可变换的角式和甩平式转头,它们多用于收集微生物、细胞碎片、细胞、大的细胞器、硫酸铵沉淀物、免疫沉淀物酶的粗提液等。特别需注意的是,每次离心前,应根据转头型号和样品多少,设置样品高度。 超高速离心机普通和高速离心机主要用于分离制备生物大分子物质和亚细胞成分;超速离心机有超过500000g的离心力,能使亚细胞器分级分离,可用于分离病毒,也可用于测定蛋白质、核酸的相对分子质量等。 根据功能不同,又可分制备性超速离心机和分析性超速离心机。由于转速高会产生大量的热量,因而这种离心机都附有冷冻装置,以降低转子室内温度。同时转子是在真空下运转的,可以减小摩擦。分析性离心时,必须对固相颗粒沉降过程跟踪监测。为此,超速离心机附有一套光学系统,光路与离心管垂直,并透过离心管内的溶液,同时测定光密度或透光率,也可以检测沉降颗粒的沉降速度和移动界面。这些测定有助于对样品的状况进行分析。 制备性超速离心机:主要由驱动和速度控制、温度控制、真空系统和转头四部分组成。驱动和速度控制:大多数超速离心机的驱动装置是由水冷或风冷电动机通过精密齿轮箱或皮带变速,或直接用变频马达连接到转头轴构成。由于驱动轴的直径仅仅0.476cm,这样,在旋转期间细轴可有一定的弹性弯曲,以便适应转头的轻度不平衡,而不至于引起震动或转铀损伤。利用变阻器和带有旋速器的控制器来选择转头的转速。除速度控制系统以外,还有一个过速保护系统,以防止转速超过转头最大规定转速时引起的转头撕裂或爆炸。为此目的,离心腔总是用能承受此种爆炸的装甲钢板密闭。 温度控制:其温度控制是由安置在转头下面的红外线射量感受器直接而连续地监测转头的温度,以保证更准确更灵敏的温度调控。真空系统:当转速超过4000 rmin 时,空气与旋转的转轴之间的摩擦生热成为严重的问题。为了消除这种热源超速离心机一般增添了真空系统。将离心腔密封,并通过两个串联工作的真空泵系统抽成真空。第一个工作泵与一般实验室的机械真空泵相同,它可抽真空到1333666Pa。一旦离心腔内的压力减低到3333Pa 以下,水冷扩散泵也开始工作。利用这两个泵,可使真空度达到并维持在013026Pa。在摩擦力降低的情况下,速度才有可能升高到所需的转数。转头:制备性超速离心机采用的转头有各种各样一般可分为两大类:角式转头和甩平式转头。角式转头的孔穴与旋转轴心之间的角度在2045度之间。这类转头的优点是具有较大的容量,速度较高。另一种甩平式转头则由一个转头上悬吊着6个自由活动的吊桶离心管套构成。当转头静止时,这些吊柄垂直悬挂;当转头在离心力的作用下转速达到200800 rmin 时吊桶即甩平到水平位置。这种转头主要是为了密度梯度沉降法而设计的。其主要优点是梯度物质可放在保持垂直的离心管中,而离心时管子保持水平。在水平位置沉降到离心管不同区域的样品呈现出横过离心管的带状,而不像角式转头中那样成角度。因此,当从转头中取出离心管时不会像在角式转头中那样,沉降成分重新定位。这类转头的缺点是:形成区带所需的时间间矩长,分析性超速离心机分析性超速离心机使用了特殊设计的转头和检测系统,以便连续地监视物质在一个离心场的沉降过程。分析性超速离心机的转头是椭圆形的,此转头通过一个有天性的轴联接到一个高速的驱动装置上。转头在一个冷冻的和真空的胶中旋转。转头上有26个装离心杯的小室,离心杯呈扇形,可上下透光。离心机中装有一个光学系统,在整个离心期间都能通过紫外吸收或折射率的变化监测离心杯中沉降着的物质。在预定的时间可以拍摄沉降物质的照片、杯中物质沉降过程中,重颗粒和轻颗粒之间形成的界面就像一个折射的透镜,在检测系统的照相底板上产生了一个”峰”,出于沉降不断进行,界面问前推进,因此峰也移动。从峰移动的速度可以得到物质沉降速度的指标。分析性超速离心机主要用于生物大分子的相对分子质量测定,估算样舱的纯度和检测生物大分子构象的变化等。PCR技术原理2012-03-07 17:50 来源:达为科 点击次数:8434 关键词: PCR 电泳 原理 分享到: 收藏夹 腾讯微博 新浪微博 开心网 PCR产物的电泳检测时间一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚致消失。一.假阴性,不出现扩增条带 PCR反应的关键环节有模板核酸的制备,引物的质量与特异性,酶的质量及活性 PCR循环条件。寻找原因亦应针对上述环节进行分析研究。模板:模板中含有杂蛋白质,模板中含有Taq酶抑制剂,模板中蛋白质没有消化除净,特别是染色体中的组蛋白,在提取制备模板时丢失过多,或吸入酚。模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。引物:引物质量、引物的浓度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论