高中数学一题多解.doc_第1页
高中数学一题多解.doc_第2页
高中数学一题多解.doc_第3页
高中数学一题多解.doc_第4页
高中数学一题多解.doc_第5页
免费预览已结束,剩余19页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学一题多解思维训练“数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”。这里所说的横向联系,主要是靠一题多解来完成的。通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。从而培养创新精神和创造能力。在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。例1 已知复数的模为2,求的最大值。解法一(代数法):设解法二(三角法):设则 解法三(几何法):yxOi-2i图1Z如图1 所示,可知当时,解法四(运用模的性质):而当时,解法五(运用模的性质): 又例2 已知求证:分析1 用比较法。本题只要证为了同时利用两个已知条件,只需要观察到两式相加等于2便不难解决。证法1 : 所以 分析2 运用分析法,从所需证明的不等式出发,运用已知的条件、定理和性质等,得出正确的结论。从而证明原结论正确。分析法其本质就是寻找命题成立的充分条件。因此,证明过程必须步步可逆,并注意书写规范。证法2 : 要证 只需证 即 因为 所以只需证 即 因为最后的不等式成立,且步步可逆。所以原不等式成立。分析3 运用综合法(综合运用不等式的有关性质以及重要公式、定理(主要是平均值不等式)进行推理、运算,从而达到证明需求证的不等式成立的方法)证法3 : 即 xMyd图2O分析4 三角换元法:由于已知条件为两数平方和等于1的形式,符合三角函数同角关系中的平方关系条件,具有进行三角代换的可能,从而可以把原不等式中的代数运算关系转化为三角函数运算关系,给证明带来方便。证法4 :可设 分析5 数形结合法:由于条件可看作是以原点为圆心,半径为1的单位圆,而联系到点到直线距离公式,可得下面证法。证法5 :(如图2)因为直线经过圆的圆心O,所以圆上任意一点到直线的距离都小于或等于圆半径1,即 简评 五种证法都是具有代表性的基本方法,也都是应该掌握的重要方法。除了证法4、证法5的方法有适应条件的限制这种局限外,前三种证法都是好方法。可在具体应用过程中,根据题目的变化的需要适当进行选择。例3 如果求证:成等差数列。分析1 要证,必须有成立才行。此条件应从已知条件中得出。故此得到直接的想法是展开已知条件去寻找转换。证法1 :故 ,即 成等差数列。分析2 由于已知条件具有轮换对称特点,此特点的充分利用就是以换元去减少原式中的字母,从而给转换运算带来便利。证法2 :设则于是,已知条件可化为:所以成等差数列。分析3 已知条件呈现二次方程判别式的结构特点引人注目,提供了构造一个适合上述条件的二次方程的求解的试探的机会。证法3 : 当时,由已知条件知即成等差数列。当时,关于的一元二次方程:其判别式故方程有等根,显然1为方程的一个根,从而方程的两根均为1,由韦达定理知 即 成等差数列。简评:证法1是常用方法,略嫌呆板,但稳妥可靠。证法2简单明了,是最好的解法,其换元的技巧有较大的参考价值。证法3引入辅助方程的方法,技巧性强,给人以新鲜的感受和启发。例4 已知,求的最小值。分析1 虽然所求函数的结构式具有两个字母,但已知条件恰有的关系式,可用代入法消掉一个字母,从而转换为普通的二次函数求最值问题。解法1 : 设,则二次项系数为故有最小值。当时, 的最小值为分析2 已知的一次式两边平方后与所求的二次式有密切关联,于是所求的最小值可由等式转换成不等式而求得。解法2 : 即即 当且仅当时取等号。 的最小值为分析3 配方法是解决求最值问题的一种常用手段,利用已知条件结合所求式子,配方后得两个实数平方和的形式,从而达到求最值的目的。解法3 :设 当时,即的最小值为11Oxy图3分析4 因为已知条件和所求函数式都具有解析几何常见方程的特点,故可得到用解析法求解的启发。解法4 : 如图3,表示直线表示原点到直线上的点的距离的平方。显然其中以原点到直线的距离最短。此时,即所以的最小值为注 :如果设则问题还可转化为直线与圆有交点时,半径的最小值。简评: 几种解法都有特点和代表性。解法1是基本方法,解法2、3、4都紧紧地抓住题设条件的特点,与相关知识联系起来,所以具有灵巧简捷的优点,特别是解法4,形象直观,值得效仿。例5 设求证:分析1 由已知条件为实数这一特点,可提供设实系数二次方程的可能,在该二次方程有两个虚根的条件下,它们是一对共轭虚根,运用韦达定理可以探求证题途径。证法1 : 设当时,可得与条件不合。于是有 该方程有一对共轭虚根,设为,于是又由韦达定理知 分析2 由于实数的共轭复数仍然是这个实数,利用这一关系可以建立复数方程,注意到这一重要性质,即可求出的值。证法2 : 设当时,可得与条件不合,则有 ,即 但 而 即分析3 因为实数的倒数仍为实数,若对原式取倒数,可变换化简为易于进行运算的形式。再运用共轭复数的性质,建立复数方程,具有更加简捷的特点。证法3 : 即从而必有简评:设出复数的代数形式或三角形式,代入已知条件化简求证,一般也能够证明,它是解决复数问题的基本方法。但这些方法通常运算量大,较繁。现在的三种证法都应用复数的性质去证,技巧性较强,思路都建立在方程的观点上,这是需要体会的关键之处。证法3利用倒数的变换,十分巧妙是最好的方法。例6 由圆外一点引圆的割线交圆于两点,求弦的中点的轨迹方程。图423PMBAOyx分析1 (直接法)根据题设条件列出几何等式,运用解析几何基本公式转化为代数等式,从而求出曲线方程。这里考虑在圆中有关弦中点的一些性质,圆心和弦中点的连线垂直于弦,可得下面解法。解法1 : 如图423,设弦的中点的坐标为,连接,则,在中,由两点间的距离公式和勾股定理有整理,得 其中分析2 (定义法)根据题设条件,判断并确定轨迹的曲线类型,运用待定系数法求出曲线方程。解法2 : 因为是的中点,所以,所以点的轨迹是以为直径的圆,圆心为,半径为该圆的方程为:化简,得 其中分析3 (交轨法)将问题转化为求两直线的交点轨迹问题。因为动点可看作直线与割线的交点,而由于它们的垂直关系,从而获得解法。解法3 :设过点的割线的斜率为则过点的割线方程为:.且过原点,的方程为 这两条直线的交点就是点的轨迹。两方程相乘消去化简,得:其中分析4 (参数法)将动点坐标表示成某一中间变量(参数)的函数,再设法消去参数。由于动点随直线的斜率变化而发生变化,所以动点的坐标是直线斜率的函数,从而可得如下解法。解法4 :设过点的割线方程为:它与圆的两个交点为,的中点为.解方程组 利用韦达定理和中点坐标公式,可求得点的轨迹方程为:其中分析5 (代点法)根据曲线和方程的对应关系:点在曲线上则点的坐标满足方程。设而不求,代点运算。从整体的角度看待问题。这里由于中点的坐标与两交点通过中点公式联系起来,又点构成4点共线的和谐关系,根据它们的斜率相等,可求得轨迹方程。解法5 :设则两式相减,整理,得 所以 即为的斜率,而对斜率又可表示为化简并整理,得 其中简评 :上述五种解法都是求轨迹问题的基本方法。其中解法1、2、3局限于曲线是圆的条件,而解法4、5适用于一般的过定点且与二次曲线交于两点,求中点的轨迹问题。具有普遍意义,值得重视。对于解法5通常利用可较简捷地求出轨迹方程,比解法4计算量要小,要简捷得多。例7.若,则函数的最大值为 ( )。法一:二次函数求最值令, 法二:二次除以一次,均值定理令当且仅当时等号成立法三:导数求单调性令则取到最大值为-8例8 已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为( )(A) (B) (C) (D)第8题图法一:设PA、PB 的长度如图所示:设PA=PB=,APO=,则APB=,PO=,=,令,则,令,则等号当且仅当,即时成立。故.此时.,选择答案D。法二:设OP的长度设OP=t(t1), APO=,则APB=, PA=PB= , = 等号当且仅当,即时成立法三:设APO=,则APB=, PA=PB= 。当且仅当,即时等号成立例9 解不等式 法一:根据绝对值的定义,进行分类讨论求解(1)当时,不等式可化为 (2)当时,不等式可化为 综上:解集为法二:转化为不等式组求解原不等式等价于 综上:解集为法三:利用等价命题法 原不等式等价于,即 解集为法四:利用绝对值的集合意义原不等式可化为,不等式的几何意义时数轴上的点的距离大于,且小于,由图得, 解集为例10 椭圆的焦点是,椭圆上一点P满足,下面结论正确的是( )(A)P点有两个 (B)P点有四个 (C)P点不一定存在 (D)P点一定不存在法一:以为直径构圆,知:圆的半径,即圆与椭圆不可能有交点。故选D法二:由题知,而在椭圆中:,不可能成立故选D法三:由题意知当p点在短轴端点处最大,设,此时为锐角,与题设矛盾。故选D法四:设,由知,而无解,故选D法五:设,假设,则,而即:,不可能。故选D法六:,故不可能。故选D法七:设由焦半径知:而在椭圆中而,故不符合题意,故选D法八:设圆方程为: 椭圆方程为:两者联立解方程组得:不可能,故圆与椭圆无交点即 不可能垂直故选D例11 求函数的值域法一:判别式法 设 ,则,由- 当时,-, 因此当时,有最小值2,即值域为法二:单调性法 先判断函数的单调性 任取,则 当时,即,此时在上时减函数 当时,在上是增函数 由在上是减函数,在上是增函数,知时,有最小值2,即值域为法三:配方法 ,当时,此时有最小值2,即值域为法四:基本不等式法有最小值2,即值域为例12 已知函数 (1)当时,求函数的最小值;- (2)若对于任意恒成立,试求实数的取值范围, 解:(1)当时,当且仅当时取等号 由性质可知,在上是增函数,所以在是增函数,在区间上的最小值为(2)法一:在区间上,恒成立恒成立设,在上增所以时,于是当且仅当时,函数恒成立,故法二:当时,函数的值恒为正;当时,函数为增函数,故当时,于是当且仅当时,函数恒成,故法三:在区间上,恒成立恒成立恒成立,故应大于,时的最大值-3, 所以例13 设二次函数满足且函数图象y轴上的截距为1,被x轴截的线段长为,求的解析式 分析:设二次函数的一般形式,然后根据条件求出待定系数a,b,c法一:设由 得: 又 由题意可知 解之得:法二:故函数的图象有对称轴可设函数图象与y轴上的截距为1,则又被x轴截的线段长为,则整理得: 解之得: 法三: 故 函数的图象有对称轴,又与x轴的交点为: 故可设例14 设 ,求的值。法一(构造函数)设,则,由于在上是单调递增函数,所以,故。法二(图象法)因为是方程的一个根,也就是方程的一个根是方程的一个根,也就是方程的一个根令,在同一坐标系中作出他们的图象,如图所示:是方程的根,即图中OA=是方程的根,即图中OB=易得OA+OB=10,所以法三:方程,的根为,由,得,又, 例15 已知数列满足,试比较与的大小 法一:作差-=,法二:作商-方法三:(单调性),关于单调递增方法四:(此法重理解,不适合数学解答)浓度法 把看成是一杯溶液(糖)的浓度,随着的增大(相当于向溶液中加糖),浓度 当然增大,易得例16 等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上.(1)求r的值; (11)当b=2时,记 证明:对任意的 ,不等式成立解:(1)因为对任意的,点,均在函数且均为常数的图像上.所以得,当时,当时,又因为为等比数列,所以,公比为,(2)当b=2时,, 则,所以法一:数学归纳法下面用数学归纳法证明不等式成立.当时,左边=,右边=,因为,所以不等式成立. 假设当时不等式成立,即成立.则当时,左边=所以当时,不等式也成立. 由、可得不等式恒成立.法二:构造数列设数列满足则所以原不等式等价于 显然上式成立法三:构造函数令则所以函数在定义域上单调递增所以原式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论