2020版高考数学复习导数及其应用高考专题突破一高考中的导数应用问题(第1课时)导数与不等式教案文新人教A版.docx_第1页
2020版高考数学复习导数及其应用高考专题突破一高考中的导数应用问题(第1课时)导数与不等式教案文新人教A版.docx_第2页
2020版高考数学复习导数及其应用高考专题突破一高考中的导数应用问题(第1课时)导数与不等式教案文新人教A版.docx_第3页
2020版高考数学复习导数及其应用高考专题突破一高考中的导数应用问题(第1课时)导数与不等式教案文新人教A版.docx_第4页
2020版高考数学复习导数及其应用高考专题突破一高考中的导数应用问题(第1课时)导数与不等式教案文新人教A版.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1课时导数与不等式题型一证明不等式例1设函数f(x)lnxx1.(1)讨论f(x)的单调性;(2)证明:当x(1,)时,1x.(1)解由题设知,f(x)的定义域为(0,),f(x)1,令f(x)0,解得x1.当0x0,f(x)单调递增;当x1时,f(x)0,f(x)单调递减(2)证明由(1)知,f(x)在x1处取得极大值也为最大值,最大值为f(1)0.所以当x1时,ln xx1.故当x(1,)时,ln xx1,ln1,即1g(x)的一般方法是证明h(x)f(x)g(x)0(利用单调性),特殊情况是证明f(x)ming(x)max(最值方法),但后一种方法不具备普遍性(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f(x1)g(x1)f(x2)g(x2)对x1x2恒成立,即等价于函数h(x)f(x)g(x)为增函数跟踪训练1已知函数f(x)xlnxex1.(1)求曲线yf(x)在点(1,f(1)处的切线方程;(2)证明:f(x)sinx在(0,)上恒成立(1)解依题意得f(x)lnx1ex,又f(1)1e,f(1)1e,故所求切线方程为y1e(1e)(x1),即y(1e)x.(2)证明依题意,要证f(x)sinx,即证xlnxex1sinx,即证xlnxexsinx1.当00,xlnx0,故xlnxexsinx1,即f(x)1时,令g(x)exsinx1xlnx,故g(x)excosxlnx1.令h(x)g(x)excosxlnx1,则h(x)exsinx,当x1时,exe11,所以h(x)exsinx0,故h(x)在(1,)上单调递增故h(x)h(1)ecos110,即g(x)0,所以g(x)在(1,)上单调递增,所以g(x)g(1)esin110,即xlnxexsinx1,即f(x)sinx.综上所述,f(x)0,f(x)单调递增;当x(1,)时,f(x)0,f(x)单调递减所以x1为函数f(x)的极大值点,且是唯一极值点,所以0a1a,故a0,所以g(x)为单调增函数,所以g(x)g(1)2,故k2,即实数k的取值范围是(,2引申探究本例(2)中若改为:x1,e,使不等式f(x)成立,求实数k的取值范围解当x1,e时,k有解,令g(x)(x1,e),由例(2)解题知,g(x)为单调增函数,所以g(x)maxg(e)2,所以k2,即实数k的取值范围是.思维升华利用导数解决不等式的恒成立问题的策略(1)首先要构造函数,利用导数求出最值,求出参数的取值范围(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题跟踪训练2已知函数f(x)axlnx,x1,e,若f(x)0恒成立,求实数a的取值范围解f(x)0,即axlnx0对x1,e恒成立,a,x1,e令g(x),x1,e,则g(x),x1,e,g(x)0,g(x)在1,e上单调递减,g(x)ming(e),a.实数a的取值范围是.1已知函数f(x)lnxx,g(x)xex1,求证:f(x)g(x)证明令F(x)f(x)g(x)lnxxxex1(x0),则F(x)1exxex(x1)ex(x1).令G(x)ex,可知G(x)在(0,)上为减函数,且G20,G(1)1e0,F(x)0,F(x)为增函数;当x(x0,)时,G(x)0,F(x)1时,令h(x)0,得xln a;令h(x)0,得0x1不合题意综上,a的取值范围为(,13已知函数f(x)axex(aR),g(x).(1)求函数f(x)的单调区间;(2)x(0,),使不等式f(x)g(x)ex成立,求a的取值范围解(1)因为f(x)aex,xR.当a0时,f(x)0时,令f(x)0,得xlna.由f(x)0,得f(x)的单调递增区间为(,lna);由f(x)0时,f(x)的单调递增区间为(,lna),单调递减区间为(lna,)(2)因为x(0,),使不等式f(x)g(x)ex,则ax,即a.设h(x),则问题转化为amax,由h(x),令h(x)0,得x.当x在区间(0,)内变化时,h(x),h(x)随x变化的变化情况如下表:x(0,)(,)h(x)0h(x)极大值由上表可知,当x时,函数h(x)有极大值,即最大值为,所以a.故a的取值范围是.4设函数f(x)ax2xlnx(2a1)xa1(aR)若对任意的x1,),f(x)0恒成立,求实数a的取值范围解f(x)2ax1ln x(2a1)2a(x1)ln x(x0),易知当x(0,)时,ln xx1,则f(x)2a(x1)(x1)(2a1)(x1)当2a10,即a时,由x1,)得f(x)0恒成立,f(x)在1,)上单调递增,f(x)f(1)0,符合题意当a0时,由x1,)得f(x)0恒成立,f(x)在1,)上单调递减,f(x)f(1)0,显然不合题意,a0舍去当0a时,由ln xx1,得ln 1,即ln x1,则f(x)2a(x1)(2ax1),0a1.当x时,f(x)0恒成立,f(x)在上单调递减,当x时,f(x)f(1)0,显然不合题意,0a1),都有f(xm)2ex,求整数k的最小值解因为f(x)为偶函数,且当x0时,f(x)2ex,所以f(x)2e|x|,对于x1,k,由f(xm)2ex得2e|xm|2ex,两边取以e为底的对数得|xm|ln x1,所以xln x1mxln x1在1,k上恒成立,设g(x)xln x1(x1,k),则g(x)10,所以g(x)在1,k上单调递减,所以g(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论