(新课程)高中数学《2.2.2 椭圆及其简单几何性质(2)》课件 新人教A版选修2-1_第1页
(新课程)高中数学《2.2.2 椭圆及其简单几何性质(2)》课件 新人教A版选修2-1_第2页
(新课程)高中数学《2.2.2 椭圆及其简单几何性质(2)》课件 新人教A版选修2-1_第3页
(新课程)高中数学《2.2.2 椭圆及其简单几何性质(2)》课件 新人教A版选修2-1_第4页
(新课程)高中数学《2.2.2 椭圆及其简单几何性质(2)》课件 新人教A版选修2-1_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

进一步巩固椭圆的简单几何性质 掌握直线与椭圆位置关系的相关知识 第2课时椭圆方程及性质的应用 课标要求 核心扫描 与直线和椭圆的位置关系相关的距离 弦长 中点等问题 重点 与椭圆相关的综合应用问题 难点 1 2 1 2 自学导引 所以消y得一个一元二次方程 两 一 无 想一想 直线和椭圆的位置关系能不能用中心到直线的距离来判断呢 提示不能 因为椭圆不是圆 中心到椭圆上点的距离不完全相等 直线与椭圆的位置关系 1 直线与椭圆有三种位置关系 相交 直线与椭圆有两个不同的公共点 相切 直线与椭圆有且只有一个公共点 相离 直线与椭圆没有公共点 2 直线与椭圆的位置关系的判断 我们把直线与椭圆的位置关系问题转化为直线和椭圆的公共点问题 而直线与椭圆的公共点问题 又可以转化为它们的方程所组成的方程组的解的问题 而它们的方程所组成的方程组的 名师点睛 解的问题通常又可以转化为一元二次方程解的问题 一元二次方程解的问题可以通过判别式来判断 因此 直线和椭圆的位置关系 通常可由相应的一元二次方程的判别式来判断 其中 x1 x2 x1x2或y1 y2 y1y2的值 可通过由直线方程与椭圆方程联立消去y或x后得到关于x或y的一元二次方程得到 题型一直线与椭圆的位置关系 思路探索 可先利用弦长公式及两点斜率公式构造方程组 再通过解方程组 得到基本元素a b的值 从而求得方程 解法一设A x1 y1 B x2 y2 代入椭圆方程并作差得a x1 x2 x1 x2 b y1 y2 y1 y2 0 例1 规律方法 1 法一利用了设点代入 作差 借助斜率解题的方法 称作 点差法 或 平方差法 这是解析几何中解决直线与圆锥曲线相交的常用方法 2 法二是圆锥曲线弦长的基本求法 是利用两点间的距离公式求得 并结合弦所在直线的斜率 利用弦长公式与根与系数的关系结合较简单 如果是焦点弦可结合椭圆的定义解 解法一如右图 设所求直线的方程为y 1 k x 2 代入椭圆方程并整理 得 4k2 1 x2 8 2k2 k x 4 2k 1 2 16 0 又设直线与椭圆的交点为A x1 y1 B x2 y2 则x1 x2是 方程的两个根 变式1 所求直线的方程为x 2y 4 0 法二设直线与椭圆交点为A x1 y1 B x2 y2 P为弦AB的中点 x1 x2 4 y1 y2 2 又 A B在椭圆上 x12 4y12 16 x22 4y22 16 两式相减 得 x12 x22 4 y12 y22 0 即 x1 x2 x1 x2 4 y1 y2 y1 y2 0 法三设所求直线与椭圆的一交点为A x y 则另一交点为B 4 x 2 y A B在椭圆上 x2 4y2 16 4 x 2 4 2 y 2 16 从而A B在方程 的图形x 2y 4 0上 而过A B的直线只有一条 所求直线的方程为x 2y 4 0 1 若点P的坐标为 0 1 求椭圆C的标准方程 2 若点P的坐标为 0 t 求t的取值范围 题型二椭圆的综合问题 例2 2 由点P的坐标为 0 t 及点A位于x轴下方 得点A的坐标为 0 t 3 t 3 b 即b 3 t 显然点B的坐标是 3 t 将它代入椭圆方程得 规律方法解析几何中的综合性问题很多 而且可与很多知识联系在一起出题 例如不等式 三角函数 平面向量以及函数的最值问题等 解决这类问题需要正确地应用转化思想 函数与方程思想和数形结合思想 其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式 这其中要注意利用根的判别式来确定参数的限制条件 变式2 12分 我国计划发射火星探测器 该探测器的运行轨道是以火星 其半径R 34百公里 的中心F为一个焦点的椭圆 如图 已知探测器的近火星点 轨道上离火星表面最近 题型三与椭圆有关的应用题 例3 题后反思 解答与椭圆相关的应用问题时 事物的实际含义向椭圆的几何性质的转化是关键 其次要充分利用椭圆的方程对变量进行讨论 以解决实际问题 神舟 五号载人飞船发射升空 于15日9时9分50秒准确进入预定轨道 开始巡天飞行 该轨道是以地球的中心F2为一个焦点的椭圆 选取坐标系如图所示 椭圆中心在原点 近地点A距地面200km 远地点B距地面350km 已知地球半径R 6371km 求飞船飞行的椭圆轨道的方程 变式3 由题设条件得a c OA OF2 F2A 6371 200 6571 a c OB OF2 F2B 6371 350 6721 解得a 6646 c 75 所以a2 44169316 b2 a2 c2 a c a c 44163691 利用设而不解的方法求解直线与椭圆相交位置关系中的中点 弦长等问题是本节特别常见的方程思想方法 方法技巧函数方程思想在椭圆中的应用 示例 思路分析 求弦AB的长 需确定点A B的坐标 点A B是直线与椭圆的交点 因此由直线方程和椭圆方程组成方程组 解方程组 依据根与系数的关系和弦长公式可求解 方法点评解决直线与椭圆的位置关系问题经常利用设而不解的方法 解题步骤为 1 设直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论