上犹三中高三数学第一次月考试卷理.doc_第1页
上犹三中高三数学第一次月考试卷理.doc_第2页
上犹三中高三数学第一次月考试卷理.doc_第3页
上犹三中高三数学第一次月考试卷理.doc_第4页
上犹三中高三数学第一次月考试卷理.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上犹三中20172018学年度第一学期高三第一次月考理科数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1已知集合, ,则( )A B C D2已知命题,则为( )A B C D3设,则是成立的( )A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件4下列函数中,在其定义域内既是奇函数又是增函数的是( )A B C D5函数的图象大致是( )6函数f(x)=的单调递减区间是( )A(3,1) B(,3) C(1,3) D(3,+)7定义运算:例如,则函数的值域为( )A B C D8设函数的图象过点(1,1),函数是二次函数,若函数的值域是,则函数的值域是( ) A. B.C. D.9已知函数在单调递减,则的取值范围是( )A B C D10已知函数,则 ( )A B C D11已知函数,则的值为( )A B C15 D 12已知函数,且函数有两个不同的零点,则实数的取值范围是( )A B或C或 D或二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上).13已知全集,集合,则=_ _.14定义在R上的函数的单调增区间为,若方程恰有4个不同的根,则实数的值为 。15设是定义在实数集R上的函数,且满足,如果,则 f(0)= .16有下列命题的单调减区间是;若函数满足,则图象关于直线对称;函数是偶函数;设是函数的导函数,若,则是的极值点其中所有正确命题的序号是_三、解答题(本大题共6小题,共70分)17已知集合,函数的定义域为集合(1)若,求集合;(2)若“”是“”的充分条件,求实数的取值范围18已知设命题函数为增函数,命题当时,函数恒成立.如果为真命题,为假命题,求的范围.19知幂函数经过点,求满足条件的实数的取值范围。20设函数与分别交直线于点A、B,且曲线在点A处的切线与曲线在点B处的切线平行。(1)求函数的表达式;(2)求函数的最小值。21定义在上的奇函数满足:时,。(1)求的解析式;(2)当时,函数有零点,试求实数的取值范围。22定义在D上的函数,如果满足:对任意D,存在常数M0,都有成立,则称是D上的有界函数,其中M称为函数的上界,已知函数=1+.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以4为上界的有界函数,求实数的取值范围学校 姓名_ 班级_ 考试号_装订线上犹三中20172018学年度第一学期高三第一次月考座位号 理科数学答题卷 一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案二、填空题(本大题共4小题,每小题5分,共20分)13 14 15 16 三、解答题(本大题共6小题,共70分)17(本小题满分10分)18. (本小题满分12分) 19.(本题满分12分)20(本题满分12分)21(本小题满分12分)22(12分)高三理科数学第一次月考参考答案一、选择题1B 2D 3B 4C 5A 6C 7.A 8.C 9C 10C 11A 12B二、填空题13 14 15-1 16三、计算题17(1),(2)【解析】试题分析:(1),则;(2)“”是“”的充分条件,则,即时,成立,即时,由得:,则且综上:的取值范围为18.【解析】试题分析:先求出命题成立的等价条件,利用为真命题,为假命题,即可确定实数的范围.试题解析:由为增函数,.因为在上为减函数,在上为增函数.在上最小值为当时,由函数恒成立得,解得如果真且假,则,如果假且真,则所以的取值范围为.考点:复合命题的真假判定与应用19(1)见解析;(2)【解析】试题分析:(1)证线面垂直可回到判定定理(化为线与两条相交直线垂直来证)结合条件平面及所给的边和角的条件可通过解三角形证得,从而证出;另外也可建立空间坐标系,运用向量运算来解决(2)由题求三棱锥的体积,结合条件及观察图形,可运用等体积法,化为求,则底面积和高易算出,可求得试题解析:(1)证明:平面, 在中,依余弦定理有:, 又,即 又,平面 (2)解:取的中点,连结, 是的中点, 平面,平面 即为三棱锥的高, 且 由(1)知:,又, , 三棱锥的体积为 【考点】(1)线面垂直的证明;(2)等体积法求几何体的体积20(1)投资项目4百万,投资项目6百万,(2)投资项目350万元,投资项目550万元【解析】试题分析:(1)根据题意,建立收益函数关系式:投资项目x百万,投资项目10-x百万,则,根据二次函数最值求法得投资项目4百万,投资项目6百万,收益总额最大(2)由题意得不等式:,解得,因此投资项目350万元,投资项目550万元试题解析:解:(1),即投资项目4百万,投资项目6百万,收益总额最大(2),解得,投资项目350万元,同理可得,应投资项目550万元考点:函数实际应用21(1);(2).【解析】试题分析:(1)依题意有,且,结合,解得,所以椭圆方程为;(2)直线的方程为,联立直线的方程和椭圆的方程,得,利用弦长公式计算,利用点到直线距离公式计算,所以,利用换元法可求得当时,面积取得最大值为,所求直线方程为.试题解析:设椭圆方程为.(1)由已知得,且,又由,解得,所以椭圆方程为.(2)由题意知直线的斜率存在,设直线的方程为,由,消去得关于的方程:,由直线与椭圆相交于、两点,解得,又由韦达定理得,.原点到直线的距离,所以,令,则,当且仅当,即时,此时,所以,所求直线方程为.考点:直线与圆锥曲线位置关系.【方法点晴】直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解22(1)函数f(x)在(,0)上不是有界函数;(2)实数a的取值范围为6,2【解析】试题分析:(1)把a=代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;(2)由题意知,|f(x)|4对x0,+)恒成立令,对t(0,1恒成立,设,求出单调区间,得到函数的最值,从而求出a的值解:(1)当时,令,x0,t1,;在(1,+)上单调递增,即f(x)在(,1)的值域为,故不存在常数M0,使|f(x)|M成立,函数f(x)在(,0)上不是有界函数; (2)由题意知,|f(x)|4对x0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论