




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相似三角形中等题31-52相似三角形中等题31-52一、选择题(共7小题)1(2014盘锦)如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AECF于点H,AD=3,DC=4,DE=,EDF=90,则DF长是()ABCD2(2014本溪)如图,已知ABC和ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A1B2C3D43(2014遵义)如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作CPF的外接圆O,连接BP并延长交O于点E,连接EF,则EF的长为()ABCD4(2014泸州)如图,在直角梯形ABCD中,DCAB,DAB=90,ACBC,AC=BC,ABC的平分线分别交AD、AC于点E,F,则的值是()ABCD5(2014南通)如图,ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A1B2C126D666(2014广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(ab)下列结论:BCGDCE;BGDE;=;(ab)2SEFO=b2SDGO其中结论正确的个数是()A4个B3个C2个D1个7(2014铜仁)如图所示,在矩形ABCD中,F是DC上一点,AE平分BAF交BC于点E,且DEAF,垂足为点M,BE=3,AE=2,则MF的长是()ABC1D二、填空题(共9小题)(除非特别说明,请填准确值)8(2014邵阳)如图,在ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BPDF,且与AD相交于点P,请从图中找出一组相似的三角形:_9(2014包头)如图,在平面直角坐标系中,RtABO的顶点O与原点重合,顶点B在x轴上,ABO=90,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C若S四边形ABCD=10,则k的值为_10(2014湖州)如图,已知在RtOAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD若OCDACO,则直线OA的解析式为_11(2014泰州)如图,A、B、C、D依次为一直线上4个点,BC=2,BCE为等边三角形,O过A、D、E3点,且AOD=120设AB=x,CD=y,则y与x的函数关系式为_12(2014咸宁)如图,在ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),ADE=B=,DE交AC于点E,且cos=下列结论:ADEACD;当BD=6时,ABD与DCE全等;DCE为直角三角形时,BD为8或;0CE6.4其中正确的结论是_(把你认为正确结论的序号都填上)13(2014攀枝花)如图,在梯形ABCD中,ADBC,BE平分ABC交CD于E,且BECD,CE:ED=2:1如果BEC的面积为2,那么四边形ABED的面积是_14(2014荆州)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是_15(2014哈尔滨)如图,在ABC中,4AB=5AC,AD为ABC的角平分线,点E在BC的延长线上,EFAD于点F,点G在AF上,FG=FD,连接EG交AC于点H若点H是AC的中点,则的值为_16(2014抚顺)如图,已知CO1是ABC的中线,过点O1作O1E1AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3AC交BC于点E3,如此继续,可以依次得到点O4,O5,On和点E4,E5,En则OnEn=_AC(用含n的代数式表示)三、解答题(共6小题)(选答题,不自动判卷)17(2014上海)已知:如图,梯形ABCD中,ADBC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且CDE=ABD(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=18(2014柳州)如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90后,得到线段PE,且PE交BC于F,连接DF,过点E作EQAB的延长线于点Q(1)求线段PQ的长;(2)问:点P在何处时,PFDBFP,并说明理由19(2014眉山)如图,在RtABC中,C=90,RtBAP中,BAP=90,已知CBO=ABP,BP交AC于点O,E为AC上一点,且AE=OC(1)求证:AP=AO;(2)求证:PEAO;(3)当AE=AC,AB=10时,求线段BO的长度20(2014绍兴)课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长21(2014南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG菱形ABCD,连接EC,GD(1)求证:EB=GD;(2)若DAB=60,AB=2,AG=,求GD的长22(2014义乌市)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P(1)若AE=CF;求证:AF=BE,并求APB的度数;若AE=2,试求APAF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长【章节训练】第27章 相似-2参考答案与试题解析一、选择题(共7小题)1(2014盘锦)如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AECF于点H,AD=3,DC=4,DE=,EDF=90,则DF长是()ABCD考点:相似三角形的判定与性质;矩形的性质菁优网版权所有专题:几何综合题分析:设DF和AE相交于O点,由矩形的性质和已知条件可证明E=F,ADE=FDC,进而可得到ADECDF,由相似三角形的性质:对应边的比值相等即可求出DF的长解答:解:设DF和AE相交于O点,四边形ABCD是矩形,ADC=90,EDF=90,ADC+FDA=EDF+FDA,即FDC=ADE,AECF于点H,F+FOH=90,E+EOD=90,FOH=EOD,F=E,ADECDF,AD:CD=DE:DF,AD=3,DC=4,DE=,DF=故选:C点评:本题考查了矩形的性质、相似三角形的判断和性质以及等角的余角相等的性质,题目的综合性加强,难度中等2(2014本溪)如图,已知ABC和ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A1B2C3D4考点:相似三角形的判定与性质;等边三角形的性质菁优网版权所有专题:几何图形问题分析:利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2解答:解:如图,ABC和ADE均为等边三角形,B=BAC=60,E=EAD=60,B=E,BAD=EAF,ABDAEF,AB:BD=AE:EF同理:CDFEAF,CD:CF=AE:EF,AB:BD=CD:CF,即9:3=(93):CF,CF=2故选:B点评:本题考查了相似三角形的判定与性质和等边三角形的性质此题利用了“两角法”证得两个三角形相似3(2014遵义)如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长,交BC的延长线于点F,作CPF的外接圆O,连接BP并延长交O于点E,连接EF,则EF的长为()ABCD考点:相似三角形的判定与性质;正方形的性质;圆周角定理菁优网版权所有分析:先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案解答:解:四边形ABCD是正方形,ABC=PCF=90,CDAB,F为CD的中点,CD=AB=BC=2,CP=1,PCAB,FCPFBA,=,BF=4,CF=42=2,由勾股定理得:BP=,四边形ABCD是正方形,BCP=PCF=90,PF是直径,E=90=BCP,PBC=EBF,BCPBEF,=,=,EF=,故选:D点评:本题考查了正方形的性质,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中4(2014泸州)如图,在直角梯形ABCD中,DCAB,DAB=90,ACBC,AC=BC,ABC的平分线分别交AD、AC于点E,F,则的值是()ABCD考点:平行线分线段成比例;角平分线的性质;等腰直角三角形菁优网版权所有专题:计算题分析:作FGAB于点G,由AEFG,得出=,求出RtBGFRtBCF,再由AB=BC求解解答:解:作FGAB于点G,DAB=90,AEFG,=,ACBC,ACB=90,又BE是ABC的平分线,FG=FC,在RtBGF和RtBCF中,RtBGFRtBCF(HL),CB=GB,AC=BC,CBA=45,AB=BC,=+1故选:C点评:本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=BC再利用比例式求解5(2014南通)如图,ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A1B2C126D66考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质菁优网版权所有专题:几何图形问题分析:首先过点A作AMBC于点M,交DG于点N,延长GF交BC于点H,易证得ADGABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案解答:解:过点A作AMBC于点M,交DG于点N,延长GF交BC于点H,AB=AC,AD=AG,AD:AB=AG:AC,BAC=DAG,ADGABC,ADG=B,DGBC,四边形DEFG是正方形,FGDG,FHBC,ANDG,AB=AC=18,BC=12,BM=BC=6,AM=12,AN=6,MN=AMAN=6,FH=MNGF=66故选:D点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用6(2014广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(ab)下列结论:BCGDCE;BGDE;=;(ab)2SEFO=b2SDGO其中结论正确的个数是()A4个B3个C2个D1个考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质菁优网版权所有分析:由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,BCD=ECG=90,则可根据SAS证得BCGDCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得CDE+DGH=90,则可得BHDE由DGF与DCE相似即可判定错误,由GOD与FOE相似即可求得解答:证明:四边形ABCD和四边形CEFG是正方形,BC=DC,CG=CE,BCD=ECG=90,BCG=DCE,在BCG和DCE中,BCGDCE(SAS),故正确;延长BG交DE于点H,BCGDCE,CBG=CDE,又CBG+BGC=90,CDE+DGH=90,DHG=90,BHDE;BGDE故正确;四边形GCEF是正方形,GFCE,=,=是错误的故错误;DCEF,GDO=OEF,GOD=FOE,OGDOFE,=()2=()2=,(ab)2SEFO=b2SDGO故正确;故选:B点评:此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质7(2014铜仁)如图所示,在矩形ABCD中,F是DC上一点,AE平分BAF交BC于点E,且DEAF,垂足为点M,BE=3,AE=2,则MF的长是()ABC1D考点:相似三角形的判定与性质;角平分线的性质;勾股定理;矩形的性质菁优网版权所有分析:设MD=a,MF=x,利用ADMDFM,得到,利用DMFDCE,得到a与x的关系式,化简可得x的值,得到D选项答案解答:解:AE平分BAF交BC于点E,且DEAF,B=90,AB=AM,BE=EM=3,又AE=2,设MD=a,MF=x,在ADM和DFM中,ADMDFM,DM2=AMMF,在DMF和DCE中,DMFDCE,解之得:,故答案选:D点评:本题考查了角平分线的性质以及三角形相似的判定方法,解题的关键在于利用三角形相似构造方程求得对应边的长度二、填空题(共9小题)(除非特别说明,请填准确值)8(2014邵阳)如图,在ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BPDF,且与AD相交于点P,请从图中找出一组相似的三角形:ABPAED(答案不唯一)考点:相似三角形的判定;平行四边形的性质菁优网版权所有专题:开放型分析:可利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似判断ABPAED解答:解:BPDF,ABPAED故答案为:ABPAED(答案不唯一)点评:本题考查了相似三角形的判定与性质:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;9(2014包头)如图,在平面直角坐标系中,RtABO的顶点O与原点重合,顶点B在x轴上,ABO=90,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C若S四边形ABCD=10,则k的值为16考点:相似三角形的判定与性质;反比例函数系数k的几何意义菁优网版权所有专题:几何图形问题分析:证DCOABO,推出=,求出=()2=,求出SODC=8,根据三角形面积公式得出OCCD=8,求出OCCD=16即可解答:解:OD=2AD,=,ABO=90,DCOB,ABDC,DCOABO,=,=()2=,S四边形ABCD=10,SODC=8,OCCD=8,OCCD=16,k=16,故答案为:16点评:本题考查了反比例函数图象上点的坐标特征,相似三角形的性质和判定的应用,解此题的关键是求出ODC的面积10(2014湖州)如图,已知在RtOAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD若OCDACO,则直线OA的解析式为y=2x考点:相似三角形的性质;反比例函数图象上点的坐标特征菁优网版权所有专题:数形结合分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出点B的坐标,再根据点B在反比例函数图象上表示出a、k的关系,然后用a表示出点B的坐标,再利用待定系数法求一次函数解析式解答解答:解:设OC=a,点D在y=上,CD=,OCDACO,=,AC=,点A(a,),点B是OA的中点,点B的坐标为(,),点B在反比例函数图象上,=,解得,a2=2k,点B的坐标为(,a),设直线OA的解析式为y=mx,则m=a,解得m=2,所以,直线OA的解析式为y=2x故答案为:y=2x点评:本题考查了相似三角形的性质,反比例函数图象上点的坐标特征,用OC的长度表示出点B的坐标是解题的关键,也是本题的难点11(2014泰州)如图,A、B、C、D依次为一直线上4个点,BC=2,BCE为等边三角形,O过A、D、E3点,且AOD=120设AB=x,CD=y,则y与x的函数关系式为y=(x0)考点:相似三角形的判定与性质;等边三角形的性质;圆周角定理菁优网版权所有专题:数形结合分析:连接AE,DE,根据同弧所对的圆周角等于圆心角的一半,求得AED=120,然后求得ABEECD根据相似三角形的对应边对应成比例即可表示出x与y的关系,从而不难求解解答:解:连接AE,DE,AOD=120,为240,AED=120,BCE为等边三角形,BEC=60;AEB+CED=60;又EAB+AEB=EBC=60,EAB=CED,ABE=ECD=120;ABEECD,=,即=,y=(x0)点评:此题主要考查学生圆周角定理以及对相似三角形的判定与性质及反比例函数的实际运用能力12(2014咸宁)如图,在ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),ADE=B=,DE交AC于点E,且cos=下列结论:ADEACD;当BD=6时,ABD与DCE全等;DCE为直角三角形时,BD为8或;0CE6.4其中正确的结论是(把你认为正确结论的序号都填上)考点:相似三角形的判定与性质;全等三角形的判定与性质菁优网版权所有专题:推理填空题分析:根据有两组对应角相等的三角形相似即可证明由BD=6,则DC=10,然后根据有两组对应角相等且夹边也相等的三角形全等,即可证得分两种情况讨论,通过三角形相似即可求得依据相似三角形对应边成比例即可求得解答:解:AB=AC,B=C,又ADE=BADE=C,ADEACD;故正确,AB=AC=10,ADE=B=,cos=,BC=2ABcosB=210=16,BD=6,DC=10,AB=DC,在ABD与DCE中,ABDDCE(ASA)故正确,当AED=90时,由可知:ADEACD,ADC=AED,AED=90,ADC=90,即ADBC,AB=AC,BD=CD,ADE=B=且cos=,AB=10,BD=8当CDE=90时,易CDEBAD,CDE=90,BAD=90,B=且cos=AB=10,cosB=,BD=故正确易证得CDEBAD,由可知BC=16,设BD=y,CE=x,=,=,整理得:y216y+64=6410x,即(y8)2=6410x,0x6.4故正确故答案为:点评:本题考查了相似三角形的判定和性质,全等三角形的判定和性质以及利用三角函数求边长等13(2014攀枝花)如图,在梯形ABCD中,ADBC,BE平分ABC交CD于E,且BECD,CE:ED=2:1如果BEC的面积为2,那么四边形ABED的面积是考点:相似三角形的判定与性质;等腰三角形的判定与性质;梯形菁优网版权所有专题:几何图形问题分析:首先延长BA,CD交于点F,易证得BEFBEC,则可得DF:FC=1:4,又由ADFBCF,根据相似三角形的面积比等于相似比的平方,可求得ADF的面积,根据S四边形ABED=SBEFSADF继而求得答案解答:解:延长BA,CD交于点F,BE平分ABC,EBF=EBC,BECD,BEF=BEC=90,在BEF和BEC中,BEFBEC(ASA),EC=EF,SBEF=SBEC=2,SBCF=SBEF+SBEC=4,CE:ED=2:1DF:FC=1:4,ADBC,ADFBCF,=()2=,SADF=4=,S四边形ABED=SBEFSADF=2=故答案为:点评:此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用14(2014荆州)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,)考点:位似变换;坐标与图形性质菁优网版权所有专题:常规题型分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标解答:解:正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,OA:OD=1:,点A的坐标为(0,1),即OA=1,OD=,四边形ODEF是正方形,DE=OD=E点的坐标为:(,)故答案为:(,)点评:此题考查了位似变换的性质与正方形的性质此题比较简单,注意理解位似变换与相似比的定义是解此题的关键15(2014哈尔滨)如图,在ABC中,4AB=5AC,AD为ABC的角平分线,点E在BC的延长线上,EFAD于点F,点G在AF上,FG=FD,连接EG交AC于点H若点H是AC的中点,则的值为考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;平行四边形的判定与性质菁优网版权所有专题:几何图形问题分析:解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD=CD;第2步:延长AC,构造一对全等三角形ABDAMD;第3步:过点M作MNAD,构造平行四边形DMNG由MD=BD=KD=CD,得到等腰DMK;然后利用角之间关系证明DMGN,从而推出四边形DMNG为平行四边形;第4步:由MNAD,列出比例式,求出的值解答:解:已知AD为角平分线,则点D到AB、AC的距离相等,设为h=,BD=CD如右图,延长AC,在AC的延长线上截取AM=AB,则有AC=4CM连接DM在ABD与AMD中,ABDAMD(SAS),MD=BD=CD过点M作MNAD,交EG于点N,交DE于点KMNAD,=,CK=CD,KD=CDMD=KD,即DMK为等腰三角形,DMK=DKM由题意,易知EDG为等腰三角形,且1=2;MNAD,3=4=1=2,又DKM=3(对顶角)DMK=4,DMGN,四边形DMNG为平行四边形,MN=DG=2FD点H为AC中点,AC=4CM,=MNAD,=,即,=故答案为:点评:本题是几何综合题,难度较大,正确作出辅助线是解题关键在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高16(2014抚顺)如图,已知CO1是ABC的中线,过点O1作O1E1AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3AC交BC于点E3,如此继续,可以依次得到点O4,O5,On和点E4,E5,En则OnEn=AC(用含n的代数式表示)考点:相似三角形的判定与性质;三角形中位线定理菁优网版权所有专题:规律型分析:由CO1是ABC的中线,O1E1AC,可证得=,以此类推得到答案解答:解:O1E1AC,BO1E1BAC,CO1是ABC的中线,=,O1E1AC,O2O1E1ACO2,由O2E2AC,可得:,可得:OnEn=AC故答案为:点评:本题主要考查平行线分线段成比例定理,相似三角形的性质和判定的理解和掌握,能得出规律是解此题的关键三、解答题(共6小题)(选答题,不自动判卷)17(2014上海)已知:如图,梯形ABCD中,ADBC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且CDE=ABD(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定菁优网版权所有专题:证明题分析:(1)证BADCDA,推出ABD=ACD=CDE,推出ACDE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案解答:证明:(1)梯形ABCD,ADBC,AB=CD,BAD=CDA,在BAD和CDA中BADCDA(SAS),ABD=ACD,CDE=ABD,ACD=CDE,ACDE,ADCE,四边形ACED是平行四边形;(2)ADBC,=,=,=,平行四边形ACED,AD=CE,=,=,=,=点评:本题考查了比例的性质,平行四边形的判定,平行线的判定的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中18(2014柳州)如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90后,得到线段PE,且PE交BC于F,连接DF,过点E作EQAB的延长线于点Q(1)求线段PQ的长;(2)问:点P在何处时,PFDBFP,并说明理由考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质菁优网版权所有分析:(1)由题意得:PD=PE,DPE=90,又由正方形ABCD的边长为1,易证得ADPQPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得DAPPBF,又由PFDBFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案解答:解:(1)根据题意得:PD=PE,DPE=90,APD+QPE=90,四边形ABCD是正方形,A=90,ADP+APD=90,ADP=QPE,EQAB,A=Q=90,在ADP和QPE中,ADPQPE(AAS),PQ=AD=1;(2)PFDBFP,ADP=EPB,CBP=A,DAPPBF,=,PA=PB,PA=AB=当PA=时,PFDBFP点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质此题难度适中,注意掌握数形结合思想的应用19(2014眉山)如图,在RtABC中,C=90,RtBAP中,BAP=90,已知CBO=ABP,BP交AC于点O,E为AC上一点,且AE=OC(1)求证:AP=AO;(2)求证:PEAO;(3)当AE=AC,AB=10时,求线段BO的长度考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质菁优网版权所有专题:几何综合题分析:(1)根据等角的余角相等证明即可;(2)过点O作ODAB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明APE和OAD全等,根据全等三角形对应角相等可得AEP=ADO=90,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=104k,再根据相似三角形对应边成比例列式求出k=1然后在RtBDO中,利用勾股定理列式求解即可解答:(1)证明:C=90,BAP=90CBO+BOC=90,ABP+APB=90,又CBO=ABP,BOC=APB,BOC=AOP,AOP=APB,AP=AO;(2)证明:如图,过点O作ODAB于D,CBO=ABP,CO=DO,AE=OC,AE=OD,AOD+OAD=90,PAE+OAD=90,AOD=PAE,在AOD和PAE中,AODPAE(SAS),AEP=ADO=90PEAO;(3)解:设AE=OC=3k,AE=AC,AC=8k,OE=ACAEOC=2k,OA=OE+AE=5k由(1)可知,AP=AO=5k如图,过点O作ODAB于点D,CBO=ABP,OD=OC=3k在RtAOD中,AD=4kBD=ABAD=104kODAP,即解得k=1,AB=10,PE=AD,PE=AD=4K,BD=ABAD=104k=6,OD=3在RtBDO中,由勾股定理得:BO=3点评:本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键20(2014绍兴)课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长考点:相似三角形的应用;二次函数的最值菁优网版权所有专题:几何综合题分析:(1)设PN=2y(mm),则PQ=y(mm),然后根据相似三角形对应高的比等于相似比列出比例式求出即可;(2)设PN=x,用PQ表示出AE的长度,然后根据相似三角形对应高的比等于相似比列出比例式并用x表示出PN,然后根据矩形的面积公式列式计算,再根据二次函数的最值问题解答解答:解:(1)设矩形的边长PN=2y(mm),则PQ=y(mm),由条件可得APNABC,=,即=,解得y=,PN=2=(mm),答:这个矩形零件的两条边长分别为mm,mm;(2)设PN=x(mm),由条件可得APNABC,=,即=,解得PQ=80xS=PNPQ=x(80x)=x2+80x=(x60)2+2400,S的最大值为2400mm2,此时PN=60mm,PQ=8060=40(mm)点评:本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年生物质能源分布式能源系统应用中的能源市场前景与优化布局报告
- 大学音乐鉴赏活动方案策划
- 数学教材模拟试题及答案
- DB65T 4361-2021 设施杏鲍菇高效栽培技术规程
- 药店员工专业试题及答案
- 腭裂术后应急预案(3篇)
- 暖通专业考试试题及答案
- 语文专业考试题目及答案
- DB65T 4509-2022 核桃大蒜间作技术规程
- 电力应急项目预案(3篇)
- 2025全国科普日科普知识竞赛题库及答案
- 2025年全国医学基础知识试题(附答案)
- 食堂安全培训课件
- 【课件】角的概念+课件+2025-2026学年人教版(2024)七年+数学级上册+
- 2025企业劳动合同范本新版
- 2025年防雷检测专业技术人员能力认定考试题库及答案
- 《房屋市政工程生产安全重大事故隐患判定标准(2024版)》解读
- 美发裁剪理论知识培训课件
- 舞蹈老师自我介绍课件
- 2025年吉林省教育系统校级后备干部选拔考试题及答案
- 社区安全知识培训资料课件
评论
0/150
提交评论