常见的运筹学灵敏度分析_第1页
常见的运筹学灵敏度分析_第2页
常见的运筹学灵敏度分析_第3页
常见的运筹学灵敏度分析_第4页
常见的运筹学灵敏度分析_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

灵敏度分析 对于市场的变化 我们的决策究竟怎样变化 不需要将它当成一个新问题 CB CBB 1B 2 灵敏度分析 或 maxz cx 3 灵敏度分析 2 面对市场变化 灵敏度分析的任务是须解决以下两类问题一 当系数A b C中的某个发生变化时 目前的最优基是否仍最优 即目前的最优生产方案是否要变化 称为模型参数的灵敏度分析 二 增加一个变量或增加一个约束条件时 目前的最优基是否仍最优 即目前的最优生产方案是否要变化 称为模型结构的灵敏度分析 灵敏度分析的方法是在目前最优基B下进行的 即当参数A b c中的某一个或几个发生变化时 考察是否影响以下两式的成立 4 1 对于参数b的灵敏度分析从矩阵形式的单纯形表中可以看出 b的变化只影响最优解的变化和最优值的变化 因此 当时 最优基不变 即生产产品的品种不变 但数量及最优值会变化 是一个不等式组 从中可以解得b的变化范围 若B 1b中有小于0的分量 则需用对偶单纯形法迭代 以求出新的最优方案 b变化的时候 仅对B 1b有影响 此时 基变量不变 因为基变量只需要相应的B可逆就可以了 仅关心B 1b 0 若新的B 1b不满足 0 可以由对偶单纯性算法调整可行性可能 因为基础解已经得到 为B 1b 保证当前最优基变化后仍未最优基 5 P33例题16对于生产计划问题 为使最优方案不变 试讨论第二个约束条件b2的变化范围 解 生产计划问题的数学模型和最优单纯形表为 6 从矩阵形式的单纯形表中可知 b2的变化只影响解的可行性B 1b 0 因此 为使最优解不变 只需变化以后的B 1b 0即可 当数据量十分大的时候 十分麻烦 写为B 1 24 26 B 1b 7 若b2变化超过范围 则需用对偶单纯形法进行求解 如b2 6 则 将上述数字替换最优单纯形表中相应位置的数据得 8 用对偶单纯形法迭代 求出的最优单纯形表如下 得到新的最优解为 x1 0 x2 3 maxz 9 9 2 对价值系数Cj变化的分析 1 当CN 非基变量的目标函数系数 中某个Cj发生变化时 只影响到非基变量xj的检验数 由于 反之 当时 最优解改变 需要用单纯形法重新进行迭代 以求得新的最优解 10 例题17对于下列线性规划模型 为使最优解不变 讨论非基变量y1的目标函数系数c3的变化范围 用单纯形法求得其最优表为 11 解 因为y1为非基变量 其目标函数系数c3的变化只会影响到y1的检验数 因此为使最优解不变 只需 即 继续迭代以求出新的最优解 12 2 当CB 即基变量的目标函数系数 中某个Cj发生变化时则会影响到所有变量的检验数 CBB 1A C解不等式组 例18设基变量x1的系数C1变化为 在最优性不变的条件下 试确定的范围 解 13 将上述数字替换单纯形表中相应位置的数字得 14 用单纯形法迭代得最优解表如下 3 技术系数aij变化的分析第一种情况 当j JN 即aij为非基变量xj的技术系数时 它的变化只影响xj的系数列B 1Pj和检验数 为使最优方案不变 只需 15 例18对于下列规划问题的最优解 若由于工艺改进 y1的技术系数改为p3 1 1 T 试讨论最优解的变化 解 最优解改变 此时其系数列改为 16 第二种情况 当j JB 由于B中元素的改变影响到B 1的变化 因此也影响到整个单纯形表T B 的变化 目前的基B对应的解有可能既不是原始可行 也不是对偶可行 于是不如重新求解 将上述数据替换最优表中相应位置的数据 然后再用单纯形法求得新的最优解 17 4 对增加新产品的分析 设某企业在计划期内 拟议生产新产品Xn 1 并已知新产品的单位利润为Cn 1 消耗系数向量为Pn 1 a1 n 1 a2 n 1 am n 1 T 此时应如何分析才能确定该新产品是否值得投产 增加新产品应在不影响企业目前计划期内最优生产的前提下进行 因此可从现行的最优基B出发考虑 若 n 1 CBB 1Pn 1 Cn 10 则不应投入 即新产品的机会成本小于目前的市场价格时 应投产否则不应投产 例19现有一新产品丙 经预测其单位利润为3 技术消耗系数为P5 2 2 T 问该产品是否值得投产 18 解 值得投产 将此变量加入最优单纯形表中得 其系数列为 19 在企业生产过程中 经常有新情况发生 造成原本不紧缺的某种资源变成为紧缺资源 对生产计划造成影响 如水 电和资源的供应不足等 对生产过程提出了新约束等 对增加新约束条件的分析方法步骤是 5 对增加新约束条件的分析 用单纯形法迭代求得最优解为 20 第一步 将目前的最优解代入新增加的约束 若能满足约束条件 则说明新增约束对目前的最优解 即最优生产方案 不构成影响 称此约束为不起作用约束 可暂时不考虑新增约束条件 否则转下一步 第二步 把新增约束添加到原问题最终表中 并作初等行变换 构成对偶可行的单纯形表 并用对偶单纯形法迭代 求出新的最优解 例19对于生产计划问题 设增加电力约束 生产1单位甲产品需耗电3个单位 生产1单位乙产品需耗电4个单位 且每天供电量不超过30单位 试分析此时最优解的变化情况 21 解 将最优解x1 6 x2 4代入约束条件 不满足 说明约束条件起作用 将约束条件加入松驰变量 化为等式 加入最优单纯形表中 在这个表中 由于x1 x2是基变量 必须为单位向量 因此将x1 x2化为单位向量得 22 再用对偶单纯形法求得新的最优表如下 23 对于增加新产品和新约束的灵敏度分析 在计算机软件中是用ModifyProgram来完成的1 增加新产品的灵敏度分析 Finaltableau Totaliteration 3 24 2 增加新约束的灵敏度分析 Finaltableau Totaliteration 3 25 练习1 一家企业制造三种产品 需三种资源 技术服务 劳力 行政管理 下表列出了三种产品每单位数量对每种资源的需要量 1 问如何安排生产 可使利润最大 2 C产品的单位利润为多少时才值得生产 3 若劳力资源增加到800小时 问最优计划是否要改变 若要改变 应如何改变 4 制造部门提出要生产一种产品 需要技术服务1小时 劳力4小时 行政管理3小时 问其单位利润为多少方可否投产 5 若有一种原材料 如今受到限制 限制条件为 问最优计划是否受到影响 26 解 1 用单纯形法求得最优表为 2 27 4 设新产品为x7 值得投产 5 将x1 100 3 x2 200 3 x3 0代入约束条件左边得 因此 最优计划不变 28 练习2 某企业生产甲 乙两种产品 需消耗A B C三种资源 产品的单位利润和单位消耗如下表所示 1 该企业如何安排生产 才能获得最大利润 2 产品甲 的单位利润在多大范围内变化 可保持最优基解不变 3 写出资源A B的影子价格 并解释其经济意义 若资源B C的限量不变 资源A不够可从市场购买 价格1元 单位 问是否要购进A资源扩大生产 29 4 若现有一新产品丁 据市场预测 丁的单位价格5元 单位 对A B C三种资源的单位消耗量为2 1 5 问是否值得生产 其最优单纯形表如下 练习3 已知某线性规划的最终单纯形表如下 其中X1 X2 X3表示生产的三种产品 30 1 根据表中数据进行经济分析 2 若有一新产品X6 其价值系数为C6 4 消耗系数为P6 1 2 T 问该产品是否值得投产 3 若增加新约束条件 问最优方案是否改变 31 练习4 甲 乙两厂竞争A B两种产品的市场 目前甲厂这两种产品的销量都只是乙厂销量的三分之一 两家工厂都已完成这两种产品更新换代的研制 但要投产上市则还需要一段时间 若同时投产两种新产品上市 每厂都需一年 若只投产一种抢先上市 则甲有厂需10个月 乙厂需9个月 而另一种产品对每厂都再需9个月才能上市 对任一种新产品 若两厂产品同时上市 估计甲厂该产品的市场占有率将增加8个百分点 即由25 增至33 若甲厂产品抢先2 6个月上市 则其市场占有率将分别增加20 30个百分点 若甲厂产品落后1 3 7个月上市 则其市场占有率将分别下降4 10 12个百分点 假设每厂都以其两种产品市场占有率增加的百分点数之和的一半作为赢得指标 试建立此对策的模型并求解 32 练习5 某钻井队要从以下10个可供选择的井位中确定5个钻井探油 使总的钻探费用为最小 若10个井位的代号为s1 s2 s10 相应的钻探费用为c1 c2 c10 并且井位选择上要满足下列限制条件 1 或选择s1和s7 或选择钻探s8 2 选择了s3或s4就不能选择s5 或反过来也一样 3 在s5 s6 s7 s8中最多只能选两个 试建立这个问题的数学模型 练习6 生产管理问题 某工厂生产A B两种产品 这两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论