



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本不等式的综合应用基本不等式是人教版高中数学必修5第三章第四节的内容,在高考中占有很重要的比重。而同学们在使用基本不等式的过程中往往会遇到各种各样的题型而觉得无从入手。现结合教学中实际遇到的问题,浅谈利用基本不等式求最值的各类题型的处理方法。题型一:直接利用基本不等式求最值理论依据:(1)当且时,当且仅当时等号成立,简记为“和定积最大”(2)当且时, ,当且仅当时等号成立,简记为“积定和最小”例1 解:,且,即的最大值为,当且仅当即时等号成立解: ,且 ,即 的最小值为6,当且仅当即时等号成立题型二:配凑法例2 解: 当且仅当时等号成立当时,取得最小值6 解: 当且仅当,即时等号成立当时,取得最大值 解:当且仅当时等号成立当时,取得最大值 错解:分析:上述不等式的等号成立条件:,即,显然不成立。正解:令 () 又在(1,)上单调递增 在时的最小值为 为题型三:“1”的代换例3 解: 当且仅当,即时,等号成立 又 为9 且=,的最小值解: 当且仅当,即时等号成立 又 =2, 的最小值为9 解: 当且仅当,即时,等号成立 又, 的最小值为 题型四:整体思想构造不等式例4 解: ,当且仅当时等号成立 又 的最小值为 解:, ,当且仅当时等号成立 又 的最小值为6 解:, ,当且仅当时等号成立 又 = 的最小值为2小结:在应用基本不等式求最值时,一定要准确把握“一正,二定,三相等”这个条件,同时,解题过程中,一般只使用一次基本不等式,若多次使用不等式,则须保证各个不等式的等号能够同时成立。(此文档部分内容来源于网络,如有侵权请告知删
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏鑫氟天科技有限公司招聘1人模拟试卷及答案详解(典优)
- 2025湖南农业大学第二批公开招聘12人考前自测高频考点模拟试题及答案详解(必刷)
- 2025北京第五实验学校招聘38人模拟试卷及参考答案详解
- 2025年核工业四一七医院招聘(22人)考前自测高频考点模拟试题参考答案详解
- 2025年河北沧州海兴县公开招聘社区工作者27名模拟试卷及答案详解(必刷)
- 2025黑龙江绥化市安达市任民镇人民政府公益性岗位招聘1人考前自测高频考点模拟试题及答案详解(全优)
- 2025年河北唐山市丰润区选聘第二批事业编制医疗技术人员13名考前自测高频考点模拟试题及答案详解参考
- 2025年三峡集团高校毕业生春季招聘笔试题库历年考点版附带答案详解
- 2025北京市平谷区教育委员会所属事业单位面向应届毕业生招聘教师140名模拟试卷附答案详解(突破训练)
- 2025甘肃张掖市教育局培黎职业学院引进高层次人才14人模拟试卷及完整答案详解1套
- 图书馆外文图书分编工作细则
- 干漆膜(涂层)厚度检测报告
- 人教版小学三年级数学上册几分之一课件16888
- 过氧化氢异丙苯安全技术说明书MSDS
- GB/T 3098.4-2000紧固件机械性能螺母细牙螺纹
- 【演练方案】特种设备事故(压力容器)应急预案
- 全新档案法专题学习讲座课件
- 六年级上册道德与法治课件第四单元第8课
- 量具使用知识培训课件
- 感动中国人物-于敏
- Q-RJ 557-2017 航天型号产品禁(限)用工艺目录(公开)
评论
0/150
提交评论