已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter25OptionValuation McGraw Hill Irwin Copyright 2013byTheMcGraw HillCompanies Inc Allrightsreserved KeyConceptsandSkills UnderstandandbeabletousePut CallParityBeabletousetheBlack ScholesOptionPricingModelUnderstandtherelationshipsbetweenoptionpremiumsandstockprice exerciseprice timetoexpiration standarddeviation andtherisk freerateUnderstandhowtheoptionpricingmodelcanbeusedtoevaluatecorporatedecisions 25 2 ChapterOutline Put CallParityTheBlack ScholesOptionPricingModelMoreaboutBlack ScholesValuationofEquityandDebtinaLeveragedFirmOptionsandCorporateDecisions SomeApplications 25 3 ProtectivePut BuytheunderlyingassetandaputoptiontoprotectagainstadeclineinthevalueoftheunderlyingassetPaytheputpremiumtolimitthedownsideriskSimilartopayinganinsurancepremiumtoprotectagainstpotentiallossTrade offbetweentheamountofprotectionandthepricethatyoupayfortheoption 25 4 AnAlternativeStrategy Youcouldbuyacalloptionandinvestthepresentvalueoftheexercisepriceinarisk freeassetIfthevalueoftheassetincreases youcanbuyitusingthecalloptionandyourinvestmentIfthevalueoftheassetdecreases youletyouroptionexpireandyoustillhaveyourinvestmentintherisk freeasset 25 5 ComparingtheStrategies Stock PutIfS E exerciseputandreceiveEIfS E letputexpireandhaveSCall PV E PV E willbeworthEatexpirationoftheoptionIfS E letcallexpireandhaveinvestment EIfS E exercisecallusingtheinvestmentandhaveS 25 6 Put CallParity Ifthetwopositionsareworththesameattheend theymustcostthesameatthebeginningThisleadstotheput callparityconditionS P C PV E Ifthisconditiondoesnothold thereisanarbitrageopportunityBuythe low sideandsellthe high sideYoucanalsousethisconditiontofindthevalueofanyofthevariables giventheotherthree 25 7 Example FindingtheCallPrice Youhavelookedinthefinancialpressandfoundthefollowinginformation Currentstockprice 50Putprice 1 15Exerciseprice 45Risk freerate 5 Expirationin1yearWhatisthecallprice 50 1 15 C 45 1 05 C 8 29 25 8 ContinuousCompounding ContinuouscompoundingisgenerallyusedforoptionvaluationTimevalueofmoneyequationswithcontinuouscompoundingEAR eq 1PV FVe RtFV PVeRtPut callparitywithcontinuouscompoundingS P C Ee Rt 25 9 Example ContinuousCompounding Whatisthepresentvalueof 100tobereceivedinthreemonthsiftherequiredreturnis8 withcontinuouscompounding PV 100e 08 3 12 98 02Whatisthefuturevalueof 500tobereceivedinninemonthsiftherequiredreturnis4 withcontinuouscompounding FV 500e 04 9 12 515 23 25 10 Example PCPwithContinuousCompounding Youhavefoundthefollowinginformation Stockprice 60Exerciseprice 65Callprice 3Putprice 7Expirationisin6monthsWhatistherisk freerateimpliedbytheseprices S P C Ee Rt60 7 3 65e R 6 12 9846 e 5RR 1 5 ln 9846 031or3 1 25 11 Black ScholesOptionPricingModel TheBlack ScholesmodelwasoriginallydevelopedtopricecalloptionsN d1 andN d2 arefoundusingthecumulativestandardnormaldistributiontables 25 12 Example OPM Youarelookingatacalloptionwith6monthstoexpirationandanexercisepriceof 35 Thecurrentstockpriceis 45 andtherisk freerateis4 Thestandarddeviationofunderlyingassetreturnsis20 Whatisthevalueofthecalloption LookupN d1 andN d2 inTable25 3N d1 9761 9772 2 9767N d2 9671 9686 2 9679 C 45 9767 35e 04 5 9679 C 10 75 25 13 Example OPMinaSpreadsheet ConsiderthepreviousexampleClickontheexcelicontoseehowthisproblemcanbeworkedinaspreadsheet 25 14 PutValues Thevalueofaputcanbefoundbyfindingthevalueofthecallandthenusingput callparityWhatisthevalueoftheputinthepreviousexample P C Ee Rt SP 10 75 35e 04 5 45 06Notethataputmaybeworthmoreifexercisedthanifsold whileacallisworthmore alivethandead unlessthereisalargeexpectedcashflowfromtheunderlyingasset 25 15 Europeanvs AmericanOptions TheBlack ScholesmodelisstrictlyforEuropeanoptionsItdoesnotcapturetheearlyexercisevaluethatsometimesoccurswithaputIfthestockpricefallslowenough wewouldbebetteroffexercisingnowratherthanlaterAEuropeanoptionwillnotallowforearlyexercise therefore thepricecomputedusingthemodelwillbetoolowrelativetothatofanAmericanoptionthatdoesallowforearlyexercise 25 16 Table25 4 25 17 VaryingStockPriceandDelta Whathappenstothevalueofacall put optionifthestockpricechanges allelseequal TakethefirstderivativeoftheOPMwithrespecttothestockpriceandyougetdelta Forcalls Delta N d1 Forputs Delta N d1 1Deltaisoftenusedasthehedgeratiotodeterminehowmanyoptionsweneedtohedgeaportfolio 25 18 WorktheWebExample ThereareseveralgoodoptionscalculatorsontheInternetCandclickontheBasicCalculatorunderAnalysisServicesPricethecalloptionfromtheearlierexampleS 45 E 35 R 4 t 5 2Youcanalsochooseastockandvalueoptionsonaparticularstock 25 19 Figure25 1 InsertFigure25 1here 25 20 Example Delta Considerthepreviousexample Whatisthedeltaforthecalloption Whatdoesittellus N d1 9767ThechangeinoptionvalueisapproximatelyequaltodeltatimesthechangeinstockpriceWhatisthedeltafortheputoption N d1 1 9767 1 0233Whichoptionismoresensitivetochangesinthestockprice Why 25 21 VaryingTimetoExpirationandTheta Whathappenstothevalueofacall put aswechangethetimetoexpiration allelseequal TakethefirstderivativeoftheOPMwithrespecttotimeandyougetthetaOptionsareoftencalled wasting assets becausethevaluedecreasesasexpirationapproaches evenifallelseremainsthesameOptionvalue intrinsicvalue timepremium 25 22 Figure25 2 Insertfigure25 2here 25 23 Example TimePremiums Whatwasthetimepremiumforthecallandtheputinthepreviousexample CallC 10 75 S 45 E 35Intrinsicvalue max 0 45 35 10Timepremium 10 75 10 0 75PutP 06 S 45 E 35Intrinsicvalue max 0 35 45 0Timepremium 06 0 0 06 25 24 VaryingStandardDeviationandVega Whathappenstothevalueofacall put whenwevarythestandarddeviationofreturns allelseequal TakethefirstderivativeoftheOPMwithrespecttosigmaandyougetvegaOptionvaluesareverysensitivetochangesinthestandarddeviationofreturnThegreaterthestandarddeviation themorethecallandtheputareworthYourlossislimitedtothepremiumpaid whilemorevolatilityincreasesyourpotentialgain 25 25 Figure25 3 Insertfigure25 3here 25 26 VaryingtheRisk FreeRateandRho Whathappenstothevalueofacall put aswevarytherisk freerate allelseequal ThevalueofacallincreasesThevalueofaputdecreasesTakethefirstderivativeoftheOPMwithrespecttotherisk freerateandyougetrhoChangesintherisk freeratehaveverylittleimpactonoptionsvaluesoveranynormalrangeofinterestrates 25 27 Figure25 4 Insertfigure25 4here 25 28 ImpliedStandardDeviations AlloftheinputsintotheOPMaredirectlyobservable exceptfortheexpectedstandarddeviationofreturnsTheOPMcanbeusedtocomputethemarket sestimateoffuturevolatilitybysolvingforthestandarddeviationThisiscalledtheimpliedstandarddeviationOnlineoptionscalculatorsareusefulforthiscomputationsincethereisnotaclosedformsolution 25 29 WorktheWebExample UtofindtheimpliedvolatilityofastockofyourchoiceCtogettherequiredinformationClickonthewebsurfertogotoNuma entertheinformationandfindtheimpliedvolatility 25 30 EquityasaCallOption Equitycanbeviewedasacalloptiononthefirm sassetswheneverthefirmcarriesdebtThestrikepriceisthecostofmakingthedebtpaymentsTheunderlyingassetpriceisthemarketvalueofthefirm sassetsIftheintrinsicvalueispositive thefirmcanexercisetheoptionbypayingoffthedebtIftheintrinsicvalueisnegative thefirmcanlettheoptionexpireandturnthefirmovertothebondholdersThisconceptisusefulinvaluingcertaintypesofcorporatedecisions 25 31 ValuingEquityandChangesinAssets Considerafirmthathasazero couponbondthatmaturesin4years Thefacevalueis 30million andtherisk freerateis6 Thecurrentmarketvalueofthefirm sassetsis 40million andthefirm sequityiscurrentlyworth 18million SupposethefirmisconsideringaprojectwithanNPV 500 000 Whatistheimpliedstandarddeviationofreturns Whatisthedelta Whatisthechangeinstockholdervalue 25 32 PCPandtheBalanceSheetIdentity Riskydebtcanbeviewedasarisk freebondminusthecostofaputoptionValueofriskybond Ee Rt PConsidertheput callparityequationandrearrangeS C Ee Rt PValueofassets valueofequity valueofariskybondThisisjustthesameasthetraditionalbalancesheetidentityAssets liabilities equity 25 33 MergersandDiversification DiversificationisafrequentlymentionedreasonformergersDiversificationreducesriskand therefore volatilityDecreasingvolatilitydecreasesthevalueofanoptionAssumediversificationistheonlybenefittoamergerSinceequitycanbeviewedasacalloption shouldthemergerincreaseordecreasethevalueoftheequity Sinceriskydebtcanbeviewedasrisk freedebtminusaputoption whathappenstothevalueoftheriskydebt Overall whathashappenedwiththemergerandisitagooddecisioninviewofthegoalofstockholderwealthmaximization 25 34 ExtendedExample PartI ConsiderthefollowingtwomergercandidatesThemergerisfordiversificationpurposesonlywithnosynergiesinvolvedRisk freerateis4 25 35 ExtendedExample PartII UsetheOPM oranoptionscalculator tocomputethevalueoftheequityValueofthedebt valueofassets valueofequity 25 36 ExtendedExample PartIII Theassetreturnstandarddeviationforthecombinedfirmis30 Marketvalueassets combined 40 15 55Facevaluedebt combined 18 7 25 TotalMVofequityofseparatefirms 25 681 9 867 35 548Wealthtransferfromstockholderstobondholders 35 548 34 120 1 428 exactincreaseinMVofdebt 25 37 M AConclusions MergersfordiversificationonlytransferwealthfromthestockholderstothebondholdersThestandarddeviationofreturnsontheassetsisreduced therebyreducingtheoptionvalueoftheequityIfmanagement sgoalistomaximizestockholderwealth thenmergersforreasonsofdiversificationshouldnotoccur 25 38 ExtendedExample LowNPV PartI StockholdersmaypreferlowNPVprojectstohighNPVprojectsifthefirmishighlyleveragedandthelowNPVprojectincreasesvolatilityConsideracompanywiththefollowingcharacteristicsMVassets 40millionFaceValuedebt 25millionDebtmaturity 5yearsAssetreturnstandarddeviation 40 Risk freerate 4 25 39 ExtendedExample LowNPV PartII Currentmarketvalueofequity 22 657millionCurrentmarketvalueofdebt 17 343million 25 40 ExtendedExample LowNPV PartIII Whichprojectshouldmanagementtake EventhoughprojectBhasalowerNPV itisbetterforstockholdersThefirmhasarelativelyhighamountofleverageWithprojectA thebondholdersshareintheNPVbecauseitreducestheriskofbankruptcyWithprojectB thestockholdersactuallyappropriateadditionalwealthfromthebondholdersforalargergaininvalue 25 41 ExtendedExample NegativeNPV PartI We veseenthatstockholdersmightpreferalowNPVtoahighone butwouldtheyeverpreferanegativeNPV Undercertaincircumstances theymightIfthefirmishighlyleveraged stockholdershavenothingtoloseifaprojectfailsandeverythingtogainifitsucceedsConsequently theymaypreferaveryriskyprojectwithanegativeNPVbuthighpotentialrewards 25 42 ExtendedExample NegativeNPV PartII ConsiderthepreviousfirmTheyhaveoneadditionalprojecttheyareconsideringwiththefollowingcharacteristicsProjectNPV 2millionMVofassets 38millionAssetreturnstandarddeviation 65 EstimatethevalueofthedebtandequityMVequity 25 423millionMVdebt 12 577million 25 43 ExtendedExample NegativeNPV PartIII Inthiscase stockholderswouldactuallypreferthenegativeNPVprojecttoeitherofthepositiveNPVprojectsThestockholdersbenefitfromtheincreasedvolatilityassociatedwiththeprojecteveniftheexpectedNPVisnegativeThishappensbecauseofthelargelevelsofleverage 25 44 Conclusions Asageneralrule managersshouldn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国禽用复合预混料配方优化及效益分析研究报告
- 制帚用成束材料创新创业项目商业计划书
- 复古市集者创新创业项目商业计划书
- 建筑工地矿泉水创新创业项目商业计划书
- 塑木公园长椅创新创业项目商业计划书
- 家具与艺术品跨界合作创新创业项目商业计划书
- 体能测评坐位体前屈教学实践方案
- 2026届河南省豫西名校化学高二上期末质量检测模拟试题含答案
- 公开课教案教学设计苏教初中语文九上桃花源记三
- 陕西交大附中 2026届高二上化学期中综合测试模拟试题含解析
- 江西洪城水业环保有限公司面向社会公开招聘工勤岗工作人员【28人】笔试考试备考试题及答案解析
- 2025四川南充市嘉陵城市发展集团有限公司招聘工作人员10人笔试历年参考题库附带答案详解
- 2025年财务主管备考题库及答案解析
- 2025年大学《印度尼西亚语》专业题库- 印尼语语法与写作
- 代办相关资质合同范本
- 真菌毒素代谢途径-洞察与解读
- 2025年能源资源管理与可持续发展试卷及答案
- 2025-2030基因治疗行业市场深度调研及前景趋势与投资研究报告
- 考研翻译(英语二)课件
- 中医治未病科室介绍与发展规划
- 80个古文二级实词
评论
0/150
提交评论