


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2012届中考数学压轴题几何与函数问题精选解析(一)例1已知,(如图)是射线上的动点(点与点不重合),是线段的中点(1)设,的面积为,求关于的函数解析式,并写出函数的定义域;(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;BADMECBADC备用图(3)联结,交线段于点,如果以为顶点的三角形与相似,求线段的长【思路点拨】(1)取中点,联结;(2)先求出 DE; (3)分二种情况讨论。解析(1)取中点,联结,为的中点,又,得;(2)由已知得以线段为直径的圆与以线段为直径的圆外切,即解得,即线段的长为;(3)由已知,以为顶点的三角形与相似,又易证得由此可知,另一对对应角相等有两种情况:;当时,易得得;当时,又,即,得解得,(舍去)即线段的长为2综上所述,所求线段的长为8或2例2(山东青岛)已知:如图(1),在中,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接若设运动的时间为(),解答下列问题:(1)当为何值时,?(2)设的面积为(),求与之间的函数关系式;(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;AQCPB(4)如图(2),连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由AQCPB 图(1) 图(2)【思路点拨】(1)设BP为t,则AQ = 2t,证APQ ABC;(2)过点P作PHAC于H(3)构建方程模型,求t;(4)过点P作PMAC于,PNBC于N,若四边形PQP C是菱形,那么构建方程模型后,能找到对应t的值图BAQPCH解析 (1)在RtABC中,由题意知:AP = 5t,AQ = 2t,若PQBC,则APQ ABC, (2)过点P作PHAC于HAPH ABC, (3)若PQ把ABC周长平分,则AP+AQ=BP+BC+CQ, 解得:若PQ把ABC面积平分,则, 即3t=3 t=1代入上面方程不成立, 不存在这一时刻t,使线段PQ把RtACB的周长和面积同时平分P BAQPC图MN(4)过点P作PMAC于,PNBC于N,若四边形PQP C是菱形,那么PQPCPMAC于M,QM=CMPNBC于N,易知P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽省中考历史试卷真题及答案详解(精校打印版)
- 中小学心理健康教育与学生心理健康素养提升论文
- 中学语文“思辨性阅读与表达”教学策略与传统文化教育的融合论文
- 艾弗格公司管理制度
- 苗圃地冬季管理制度
- 茶油树基地管理制度
- 融入数字孪生的中职智慧园林学习空间构建与应用
- 管理学谷歌案例分析
- 视觉感知汽车领域应用分析
- 自动控制原理课程设计 (一)
- 中国高血压防治指南(2024年修订版)
- 济宁职业技术学院《市场营销概论》2023-2024学年第一学期期末试卷
- 蔬菜种植基地管理手册
- 部编人教版五年级下册语文全册教案
- 【MOOC】微处理器与嵌入式系统设计-电子科技大学 中国大学慕课MOOC答案
- 垃圾电厂的安全培训
- 小儿肠炎的护理
- 《陕西风土人情》课件
- 交通运输新质生产力发展的理论逻辑与实现路径
- 消防安全管理制度应急预案
- 国开2024年秋《机械制图》形考作业1-4答案
评论
0/150
提交评论