关系与基数_290601741_第1页
关系与基数_290601741_第2页
关系与基数_290601741_第3页
关系与基数_290601741_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

设是两个集合 笛卡尔积 记作 二元关系 设是两个集合 例 位于直线上方 其实就是 逆关系 设是两个集合 称集合为的逆关系 关系与映射 满射 设是映射 若 即 单射 设是映射 则称为单射 若 且 双射 如果一个映射既是单射又是满射 则称为双射 逆映射 若二元关系是双射 则称为满射 则其逆关系也是映射 称为的逆映射 映射 设是两个集合 若使得 则称为映射 关于集合的基数 cardinal 有限集合的基数就是集合中所含元素的个数 或 等势 若两个集合与之间存在双射 记作 例 因为存在双射 也称与具有相同的基数 可数集 与自然数集等势的集合称为可数集 或可列集 可数集的基数记作 例 首先 非负有理数集是可数集 再在与之间建立双射 有理数集是可数集 因为在与之间存在双射 在与之间存在双射 所以在与之间存在双射 例 开区间不是可数集 证明 假设开区间是可数集 则 令 矛盾 例 不是可数集 证明 存在双射 所以与等势

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论