函数奇偶78-81.doc_第1页
函数奇偶78-81.doc_第2页
函数奇偶78-81.doc_第3页
函数奇偶78-81.doc_第4页
函数奇偶78-81.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题名称3.2函数的性质(奇偶性)课型多媒体课时2授课时间教学资源见课件教学设备电脑、投影仪教学方法兴趣导入、动脑思考、例题解读、巩固练习教学目标知识目标能力目标素质目标 理解函数的奇偶性的概念; 会借助于函数图像讨论函数的奇偶性; 理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性 通过利用函数图像研究函数性质,培养学生的观察能力; 通过函数奇偶性的判断,培养学生的数学思维能力培养学生的观察能力;培养学生的数学思维能力教学重点 函数单调性与奇偶性的概念及其图像特征; 简单函数奇偶性的判定教学难点函数奇偶性的判断学情分析学生对数学失去学习兴趣,无论图形、动画都不能引起他们的兴起设计思想(1)用学生熟悉的主题活动将所学的知识有机的整合在一起;(2)引导学生去感知数学的数形结合思想通过图形认识特征,由此定义性质,再利用图形(或定义)进行性质的判断;(3)在问题的思考、交流、解决中培养和发展学生的思维能力教学过程教学环节教学内容教师活动学生活动教学意图创设情景 兴趣导入*创设情景 兴趣导入问题 P1P3P2平面几何中,曾经学习了关于轴对称图形和中心对称图形的知识如图所示,点关于轴的对称点是沿着x轴对折得到与相重合的点,其坐标为 ;点关于轴的对称点是沿着轴对折得到与相重合的点,其坐标为 ;点关于原点的对称点是线段绕着原点旋转180得到与相重合的点,其坐标为 质疑引导分析总结观察思考求解交流引导启发学生了解对称特点动脑思考 探索新知*动脑思考 探索新知一般地,设点为平面上的任意一点,则(1)点关于x轴的对称点的坐标为;(2)点关于轴的对称点的坐标为;(3)点关于原点的对称点的坐标为说明归纳思考理解教给学生自我分析总结巩固知识 典型例题*巩固知识 典型例题例3(1)已知点,写出点关于x轴的对称点的坐标;(2)已知点,写出点关于轴对称点的坐标与关于原点的对称点的坐标;(3)设函数,在函数图像上任取一点,写出点关于轴的对称点的坐标与关于原点的对称点的坐标分析本题需要利用三种对称点的坐标特征来进行研究解(1)点关于轴的对称点的坐标为;(2)点关于轴的对称点的坐标为,点关于原点的对称点的坐标;(3)点关于轴的对称点的坐标为,点关于原点的对称点的坐标为质疑说明引领讲解观察思考主动求解理解领会通过例题进一步领会三种对称方法的特点注意数形结合分析作业布置运用知识 强化练习教材练习3.2.2求满足下列条件的点的坐标:(1)与点关于轴对称;(2)与点关于轴对称;(3)与点关于坐标原点对称;(4)与点关于轴对称思考动手求解交流创设情景 兴趣导入创设情景 兴趣导入问题 观察下列函数图像是否具有对称性,如果有关于什么对称? 图(1) 图(2)生活中还有很多类似的对称图形(见对应课件)对于图(1),如果沿着y轴对折,那么对折后y轴两侧的图像完全重合即函数图像上任意一点关于轴的对称点仍然在函数图像上,这时称函数图像关于轴对称;轴叫做这个函数图像的对称轴对于图(2),如果将图像沿着坐标原点旋转180,旋转前后的图像完全重合即函数图像上任意一点关于原点的对称点仍然在函数的图像上,这时称函数图像关于坐标原点对称;原点叫做这个函数图像的对称中心质疑引导说明分析讲解强调思考观察理解领会记忆生活中的对称图形也可以使学生感受数学的对称美动脑思考 探索新知动脑思考 探索新知概念设函数的定义域为数集D,对任意的,都有(即定义域关于坐标原点对称),且(1)函数的图像关于轴对称,此时称函数为偶函数;(2) 函数的图像关于坐标原点对称,此时称函数称函数为奇函数如果一个函数是奇函数或偶函数,那么,就说这个函数具有奇偶性不具有奇偶性的函数叫做非奇非偶函数判断判断一个函数是否具有奇偶性的基本步骤是:(1)求出函数的定义域,如果对于任意的都有(即关于坐标原点对称),则分别计算出与,然后根据定义判断函数的奇偶性(2)如果存在某个,但是,则函数肯定是非奇非偶函数当然,对于用图像法表示的函数,可以通过对图像对称性的观察判断函数是否具有奇偶性说明讲解分析强调说明了解理解记忆领会掌握记忆奇偶性的概念稍有抽象结合图像分析强调奇偶性判断的步骤性巩固知识 典型例题巩固知识 典型例题说出下列函数的奇偶性 例4判断下列函数的奇偶性:(1);(2);(3); (4)分析需要依照判断函数奇偶性的基本步骤进行解(1)函数的定义域为,是关于原点对称的区间,且,所以是奇函数;(2)的定义域为,是关于原点对称的区间,且,所以函数是偶函数;(3)的定义域是,不是一个关于原点对称的区间,所以函数是非奇非偶函数;(4)的定义域为,是关于原点对称的区间,且,由于,并且,所以函数是非奇非偶函数质疑说明强调引领讲解分析观察体会思考主动求解理解领会领会函数奇偶性的判断方法特殊情况重点加以讲解分析评价总结归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?判断一个函数是否具有奇偶性的基本步骤是:(1)求出函数的定义域,如果对于任意的都有(即关于坐标原点对称),则分别计算出与,然后根据定义判断函数的奇偶性(2)如果存在某个,但是,则函数肯定是非奇非偶函数当然,对于用图像法表示的函数,可以通过对图像对称性的观察判断函数是否具有奇偶性*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进行学习的? 你的学习效果如何?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论