


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.4弧长和扇形面积 了解扇形的概念,理解,z。的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用 通过复习圆的周长、圆的面积公式,探索n。的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决一些题目上。 1.重点:n的圆心角所对的弧长,扇形面积及其它们的应用2难点:两个公式的应用3关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程一、复习引入 (口问,学生口答)请同学们回答下列问题 1圆的周长公式是什么? 2圆的面积公式是什么? 3什么叫弧长?二、探索新知 (小黑板)请同学们独立完成下题:设圆的半径为R,则: 1圆的周长可以看作_度的圆一心角所 对的弧 21的圆心角所对的弧长是_32的圆心角所对的弧长是_ 44的圆心角所对的弧长是_5n的圆心角所对的弧长是_ (点评)根据同学们的解题过程,我们可得到:n。的圆心角所对的弧长为 例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图示的管道的展直长度,即盈的长(结果精确到O1mm) 问题(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图示 (1)这头牛吃草的最大活动区域有多大? (2)如果这头牛只能绕柱子转过n角,那它的最大活动区域有多大? 学生提问后,点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积 (2)如果这头牛只能绕柱子转过n角,那它的最大活动区域应该是n圆心角的两个半径的n圆心角所对的弧所围成的圆的一部分的图形,如图 像这样,由组成圆心角的两条半径和圆心角所 对的弧所围成的图形叫做扇形 练习:如图示 1该图的面积可以看作是_度的圆心角所对的扇形的面积 2设圆的半径为R,1的圆心角所对的扇形面积S扇形_; 3设圆的半径为R,2的圆心角所对的扇形面积S扇形_; 4设圆的半径为R,5的圆心角所对的扇形面积S扇形_; 5设圆半径为R,n的圆心角所对的扇形面积S扇形_; 检查学生练习情况并点评 例2如图,已知扇形 AOB的半径为10,AOB=60,求AB的长(结果精确到O1)和扇形AOB的面积结果精确到O1) 分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足三、巩固练习教材P124练习四、应用拓展 例3(1)操作与证明:如图,0是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕0点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a (2)尝试与思考:如图,将一块半径足够长的扇形纸板的圆心角放在边长为n的正三角形或边长为n的正五边形的中心点处,并将纸板绕O点旋转,当扇形纸板的圆心角为时,正三角形边被纸覆盖部分的总长度为定值a;当扇形纸板的圆心角为_时,正五边形的边长被纸板覆盖部分的总长度也为定值a (3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为n的正n边形的中心。点处,若将纸板绕。点旋转,当扇形纸板的圆心角为时,正n边形的边被纸板覆盖部分的总长度为定值n,这时正n边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正”边形面积S之间的关系(不需证明);若不是定值,请说明理由五、归纳小结(学生小结,点评)本节课应掌握: 1n。的圆心角所对的弧长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合作店合同范本xy
- 代办牛羊屠宰合同范本
- 拆除游乐设施合同范本
- 稻米加工合同范本
- 跨境鞋子转让合同范本
- 装修别墅合同范本
- 化粪池清运合同范本
- 个人卡车转让合同范本
- 装修签安全合同范本
- 工程牌匾质保合同范本
- 2025年发展对象考试题库附含答案
- 2025年兵团基层两委正职定向考录公务员试题(附答案)
- 2025年新专长针灸考试题及答案
- 高三生物一轮复习课件微专题5电子传递链化学渗透假说及逆境胁迫
- DBJ50-T-306-2024 建设工程档案编制验收标准
- 2025四川雅安荥经县国润排水有限责任公司招聘5人笔试历年参考题库附带答案详解
- 2025中国银行新疆区分行社会招聘笔试备考试题及答案解析
- 污水采样培训课件
- 药品医疗器械试题及答案
- 子宫内膜类器官构建与临床转化专家共识解读 2
- 幼师培训:如何上好一节课
评论
0/150
提交评论