免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1. 理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k 为常数,), 能判断一个给定函数是否为反比例函数2. 能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点3. 能根据图象数形结合地分析并掌握反比例函数( k 为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题4. 对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型5. 进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法(三)重点难点1. 重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用2. 难点是反比例函数及其图象的性质的理解和掌握 二、基础知识(一)反比例函数的概念精品资料1. ()可以写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2. ()也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3. 反比例函数的自变量,故函数图象与x 轴、 y 轴无交点(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x 的取值不能为0,且 x 应对称取点(关于原点对称)(三)反比例函数及其图象的性质1. 函数解析式:()2. 自变量的取值范围:3. 图象:(1) )图象的形状:双曲线越大,图象的弯曲度越小,曲线越平直越小,图象的弯曲度越大(2) )图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线当时,图象的两支分别位于一、三象限;在每个象限内,y 随 x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随 x 的增大而增大(3) )对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上图象关于直线对称,即若( a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上4. k 的几何意义如图 1 ,设点 p( a,b)是双曲线上任意一点,作pa x 轴于 a 点, pb y 轴于 b 点,则矩形pboa 的面积是(三角形pao 和三角形pbo 的面积都是)如图 2 ,由双曲线的对称性可知,p 关于原点的对称点q 也在双曲线上,作qc pa 的延长线于c ,则有三角形pqc 的面积为图1图25. 说明:(1) )双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论(2) )直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称(3) )反比例函数与一次函数的联系(四)实际问题与反比例函数1 求函数解析式的方法:( 1 )待定系数法;( 2)根据实际意义列函数解析式2 注意学科间知识的综合,但重点放在对数学知识的研究上(五)充分利用数形结合的思想解决问题 三、例题分析1. 反比例函数的概念(1) )下列函数中,y 是 x 的反比例函数的是()a y=3xbc 3xy=1d(2) )下列函数中,y 是 x 的反比例函数的是()a bcd 答案:( 1) c ;(2 ) a2. 图象和性质(1) )已知函数是反比例函数,若它的图象在第二、四象限内,那么k= 若 y 随 x 的增大而减小,那么k= (2) )已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第 象限(3) )若反比例函数经过点(, 2),则一次函数的图象一定不经过第 象限(4) )已知 a b 0 ,点 p (a, b)在反比例函数的图象上,则直线不经过的象限是()a 第一象限b 第二象限c第三象限d第四象限(5) )若 p ( 2 ,2 )和 q ( m,)是反比例函数图象上的两点, 则一次函数y=kx+m的图象经过()a 第一、二、三象限b 第一、二、四象限c 第一、三、四象限d第二、三、四象限(6) )已知函数和(k 0 ),它们在同一坐标系内的图象大致是()a. bcd 答案:( 1) 1 ;( 2)一、三;( 3)四;( 4 )c ;(5 ) c;( 6 )b3. 函数的增减性( 1)在反比例函数的图象上有两点,且,则的值为( )a 正数b 负数c非正数d非负数( 2)在函数( a 为常数) 的图象上有三个点,则函数值、的大小关系是()a bcd(3 )下列四个函数中:; ; y 随 x 的增大而减小的函数有()a 0个b 1个c 2个d 3个( 4 )已知反比例函数的图象与直线y=2x 和 y=x+1 的图象过同一点,则当x 0时,这个反比例函数的函数值 y 随 x 的增大而(填 “增大 ”或“减小 ”)答案:( 1) a;(2 ) d;( 3) b 注意,( 3)中只有 是符合题意的,而 是在 “每一个象限内”y 随 x 的增大而减小4. 解析式的确定(1) )若与成反比例,与成正比例,则y 是 z 的()a 正比例函数b反比例函数c一次函数d不能确定(2) )若正比例函数y=2x 与反比例函数的图象有一个交点为( 2, m),则 m= ,k= ,它们的另一个交点为 (3) )已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值(4) )已知一次函数y=x+m 与反比例函数()的图象在第一象限内的交点为p( x 0 ,3 )求 x 0 的值; 求一次函数和反比例函数的解析式(5) )为了预防 “非典 ”,某学校对教室采用药薰消毒法进行消毒已知药物燃烧时,室内每立方米空气中的含药量 y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与 x 成反比例(如图所示) ,现测得药物8 分钟燃毕,此时室内空气中每立方米的含药量为6毫克请根据题中所提供的信息解答下列问题:药物燃烧时y 关于 x 的函数关系式为 ,自变量x 的取值范围是 ;药物燃烧后y 关于 x 的函数关系式为 研究表明, 当空气中每立方米的含药量低于1.6 毫克时学生方可进教室,那么从消毒开始, 至少需要经过 分钟后,学生才能回到教室; 研究表明, 当空气中每立方米的含药量不低于3 毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌, 那么此次消毒是否有效?为什么?答案:( 1) b;( 2) 4 , 8,(,);(3) )依题意,且,解得(4) ) 依题意,解得 一次函数解析式为,反比例函数解析式为(5 ) ,; 30; 消毒时间为(分钟),所以消毒有效5. 面积计算( 1 )如图,在函数的图象上有三个点a、b、c,过这三个点分别向x 轴、 y 轴作垂线,过每一点所作的两条垂线段与x 轴、 y 轴围成的矩形的面积分别为、,则()a bcd第( 1)题图第( 2)题图(2) )如图, a 、b 是函数的图象上关于原点o 对称的任意两点,ac/y 轴, bc/x 轴, abc 的面积 s, 则 ( )a s=1b 1 s 2c s=2d s 2(3) )如图, rt aob 的顶点 a 在双曲线上,且 s aob=3 ,求 m 的值第( 3)题图第( 4 )题图(4) )已知函数 的图象和两条直线 y=x ,y=2x 在第一象限内分别相交于 p1 和 p2 两点,过 p1 分别作 x 轴、y轴的垂线 p1q1 , p1r1 ,垂足分别为 q1 , r1 ,过 p2 分别作 x 轴、 y 轴的垂线 p2 q 2 , p2 r 2 ,垂足分别为 q 2 , r 2,求矩形 o q 1p1 r 1 和 o q 2p2 r 2 的周长,并比较它们的大小( 5)如图, 正比例函数 y=kx( k 0)和反比例函数 的图象相交于 a、c 两点, 过 a 作 x 轴垂线交 x 轴于 b, 连接 bc ,若 abc 面积为 s,则 s= 第( 5 )题图第( 6 )题图(6 )如图在rt abo 中,顶点 a 是双曲线与直线在第四象限的交点,ab x 轴于 b 且sabo=求这两个函数的解析式;求直线与双曲线的两个交点a 、c 的坐标和 aoc 的面积( 7)如图,已知正方形oabc的面积为 9 ,点 o 为坐标原点,点a、c 分别在 x 轴、 y轴上,点 b 在函数( k0 , x 0)的图象上,点p ( m, n)是函数( k0 ,x 0 )的图象上任意一点, 过 p 分别作 x 轴、 y 轴的垂线,垂足为e 、f,设矩形oepf 在正方形oabc以外的部分的面积为s 求 b 点坐标和k 的值; 当时,求点p 的坐标; 写出 s 关于 m 的函数关系式答案:( 1) d ;(2 ) c;( 3)6 ;(4 ),矩形 o q 1p1 r 1的周长为 8, o q 2p2 r 2的周长为,前者大(5 ) 1(6 ) 双曲线为,直线为; 直线与两轴的交点分别为(0,)和(,0 ),且 a( 1,)和 c (, 1),因此面积为 4(7 ) b( 3 ,3),;时, e ( 6, 0 ),;6. 综合应用(1 )若函数y=k1x (k1 0)和函数( k2 0 )在同一坐标系内的图象没有公共点,则k1 和 k2()a 互为倒数b符号相同c 绝对值相等d符号相反( 2 )如图,一次函数的图象与反比例数的图象交于a、b 两点: a(, 1),b ( 1 ,n) 求反比例函数和一次函数的解析式; 根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围( 3 )如图所示,已知一次函数( k0)的图象与x 轴、y 轴分别交于a、 b两点,且与反比例函数( m 0 )的图象在第一象限交于c 点, cd 垂直于 x 轴,垂足为d ,若 oa=ob=od=1 求点 a、b、d 的坐标; 求一次函数和反比例函数的解析式( 4 )如图,一次函数的图象与反比例函数的图象交于第一象限c、d 两点,坐标轴交于a 、b 两点,连结oc , od (o 是坐标原点) 利用图中条件,求反比例函数的解析式和m 的值; 双曲线上是否存在一点p,使得 poc 和 pod 的面积相等?若存在,给出证明并求出点p 的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广发银行珠海分行2025年下半年社会招考易考易错模拟试题(共500题)试卷后附参考答案
- 广东湛江市教育卫生系统等部分事业单位2025招考高校毕业生易考易错模拟试题(共500题)试卷后附参考答案
- 北京市大兴区2025-2026学年八年级上学期期中语文试题(含答案及解析)
- 山东建筑工程质量检测站事业单位招考易考易错模拟试题(共500题)试卷后附参考答案
- 宁夏事业单位联考考试招聘易考易错模拟试题(共500题)试卷后附参考答案
- 根据合同写合作协议
- 桁架转让协议书范本
- 框架协议的合同模板
- 桌椅货架转让协议书
- 机蔬菜宅配合同范本
- 团校结业考试试题及答案
- 2025南京市劳动合同解除协议样本
- 《中国高血压防治指南(2025年修订版)》全文
- 科室护理质控人员的培训
- 全面从严治团课件
- 锅炉维护保养课件
- 再生资源回收企业操作规程及环保要求
- 冬季四防安全培训课件
- 评标专家廉政课件
- 宠物中医康复知识培训课件
- 《动物疫病流行病学调查技术规范 小反刍兽疫》
评论
0/150
提交评论