


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题弧长和扇形面积(3)授课时间:2009年10月【教学内容】 1圆锥母线的概念2圆锥侧面积的计算方法3计算圆锥全面积的计算方法4应用它们解决实际问题【巩固练习】1、已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为( )。A、 B、3 C、4 D、72、(中考题)用半径为30cm,圆心角为120的扇形围成一个圆锥的侧面,则圆锥的底面半径为( )(第3题) A10cm B30cm C45cm D300cm3、(2008中考题)如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( )AB C D4、矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的表面积是_(用含的代数式表示)5、(2008中考题)将一个底面半径为3cm,高为4cm圆锥形纸筒沿一条母线剪开,所得的侧面展开图的面积为_。6、一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_7、如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60,求圆锥全面积【拓展创新】1、如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是( )A6 B C3 D32、如图所示,一个几何体是从高为4m,底面半径为3cm的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,求这个几何体的表面积3、教材125页习题24.4第10题。 例3如图所示,经过原点O(0,0)和A(1,-3),B(-1,5)两点的曲线是抛物线y=ax2+bx+c(a0). (1)求出图中曲线的解析式; (2)设抛物线与x轴的另外一个交点为C,以OC为直径作M,如果抛物线上一点P作M的切线PD,切点为D,且与y轴的正半轴交点为E,连结MD,已知点E的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示)(3)延长DM交M于点N,连结ON、OD,当点P在(2)的条件下运动到什么位置时,能使得S四边形EOMD=SDON请求出此时点P的坐标 解:(1)O(0,0),A(1,-3),B(-1,5)在曲线y=ax2+bx+c(a0)上 解得a=1,b=-4,c=0 图中曲线的解析式是y=x2-4x(2)抛物线y=x2-4x与x轴的另一个交点坐标为c(4,0),连结EM, M的半径为2,即OM=DM=2 ED、EO都是M的切线; EO=ED EOMEDM S四边形EOMD=2SOME=2OMOE=2m(3)设点D的坐标为(x0,y0) ;SDON=2SDOM=2OMy0=2y0 ; S四边形ECMD=SDON时即2m=2y0,m=y0 m=y0; EDx轴 又ED为切线; D(2,2) 点P在直线ED上,故设P(x,2) P在圆中曲线y=x2-4x上; 2=x2-4x 解得:x=2 P1(2+,0),P2(2-,2)为所求 三、综合提高题 1一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,需要加工这样的一个烟囱帽,请你画一画: (1)至少需要多少厘米铁皮(不计接头) (2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?2如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60,求圆锥全面积 3如图所示,一个几何体是从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业预算管理信息化建设中的难题及解决思路
- 新媒体助力大学生就业创业信息获取与精准匹配
- 人工智能在审计中的应用面临的技术与法规挑战
- 强化企业内部管理提升生产经营效率
- 色彩考前模拟试题及答案
- 市政管网抢修工程动态结算机制激励约束机制研究
- 高职院校心理健康教育课程的跨部门协同设计
- 公司员工安全用电培训课件
- 流转土地征用申请报告(3篇)
- 争当绿色小卫士课件
- 2025-2030滑雪培训行业市场发展分析及前景趋势预测与投资可行性评估报告
- 课堂高效学习的主阵地 教学设计-2023-2024学年高中上学期主题班会
- 2025年放射工作人员培训考试试题(附答案)
- 高考熟词生义解密(复习讲义)-2026年高考英语一轮复习(北京专用)挖空版
- 2025年陕西省专业技术人员继续教育公需课答案
- 2025年北京市中考英语试卷(含答案与解析)
- 浙江名校协作体(G12)2025年9月2026届高三返校联考英语(含答案)
- 2025年环保法律法规基础知识考试卷及答案
- 2026届新人教版高考物理一轮复习讲义:静电场及其应用(含答案)
- 检测基础知识培训课件
- 采购管理大师谢勤龙讲义《供应链管理的问题多多与解决之道》
评论
0/150
提交评论