



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时 含30角的直角三角形的性质 教学目标 (一)知识与技能 掌握含30角的直角三角形的性质与应用。 (二)能力训练要求 通过探究含30角的直角三角形的性质,增强学生对特殊直角三角形的认识,培养学生分析问题、解决问题的能力。 (三)情感与价值观要求 1鼓励学生积极参与数学活动,激发学生的好奇心和求知欲。 2体验数学活动中的探索与创新、感受数学的严谨性。 教学重点 含30角的直角三角形的性质定理的发现与证明。 教学难点 1含30角的直角三角形性质定理的探索与证明。 2引导学生全面、周到地思考问题。 教学方法 探索发现法、讲练相结合 教学过程 提出问题,创设情境 我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质大家可能已猜到,我让大家准备好的含30角的直角三角形,它有什么不同于一般的直角三角形的性质呢? 问题:用两个全等的含30角的直角三角尺,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由 由此你能想到,在直角三角形中,30角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗? 导入新课用含30角的直角三角尺摆出了如下两个三角形 其中,图(1)是等边三角形,因为ABDACD,所以AB=AC,又因为RtABD中,BAD=60,所以ABD=60,有一个角是60的等腰三角形是等边三角形 图(1)中,B=C=60,BAC=BAD+CAD=30+30=60,所以B=C=BAC=60,即ABC是等边三角形 由此能得出在直角三角形中,30角所对的直角边与斜边的关系吗?你能证明它吗? 定理:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半 已知:如图,在RtABC中,C=90,BAC=30求证:BC=AB 分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD 证明:在ABC中,ACB=90,BAC=30,则B=60 延长BC至D,使CD=BC,连接AD(如下图) ACB=60, ACD=90 AC=AC, ABCADC(SAS) AB=AD(全等三角形的对应边相等) ABD是等边三角形(有一个角是60的等腰三角形是等边三角形) BC=BD=AB 练习1如图,在ABC 中,C =90,A = 30,AB =10,则BC 的长为 A B C A B C D 练习2如图,在ABC 中,ACB =90,CD 是高,A =30,AB =4则BD = . 师这个定理在我们实际生活中有广泛的应用,因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,下面我们就来看一个例题 例5右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,A=30,立柱BD、DE要多长? 分析:观察图形可以发现在RtAED与RtACB中,由于A=30,所以DE=AD,BC=AB,又由D是AB的中点,所以DE=AB 解:因为DEAC,BCAC,A=30,由定理知 BC=AB,DE=AD, 所以BD=7.4=3.7(m) 又AD=AB, 所以DE=AD=3.7=1.85(m) 答:立柱BC的长是3.7m,DE的长是1.85m 例等腰三角形的底角为15,腰长为2a,求腰上的高 已知:如图,在ABC中,AB=AC=2a,ABC=ACB=15,CD是腰AB上的高 求:CD的长 分析:观察图形可以发现,在RtADC中,AC=2a,而DAC是ABC的一个外角,则DAC=152=30,根据在直角三角形中,30角所对的边是斜边的一半,可求出CD 解:ABC=ACB=15, DAC=ABC+BAC=30 CD=AC=a(在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半) 师下面我们来做练习 随堂练习 P81 课时小结 这节课,我们在上节课的基础上推理证明了含30的直角三角形的边的关系这个定理是个非常重要的定理,在今后的学习中起着非常重要的作用 课后作业 P92 第7、11题 活动与探究 在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30 过程:可以从证明“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半”从辅助线的作法中得到启示 结果: 已知:如图(1),在RtABC中,C=90,BC=AB求证:BAC=30 证明:延长BC到D,使CD=BC,连结AD ACB=90, ACD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高端航空器租赁与全球航线运营服务合同
- 2025年安全常识笔试试题及答案
- 离婚协议中财产分配、子女抚养及赡养责任协议
- 离婚协议中共同财产分割及子女抚养责任合同
- 夫妻房产分割协议范本:房产评估与补偿条款
- 儿童服饰设计工作室转让及原创版权授权合同
- 公共停车场物业合同延期及停车诱导系统补充协议
- 行政合同在行政合同争议解决途径中的概念与特性分析
- 社会保险基金应收账款质押担保及反担保合同
- 签订二手房补充协议时如何避免合同纠纷
- 2024年苏州历史文化名城建设集团有限公司招聘笔试冲刺题(带答案解析)
- 医院保洁中央运输服务项目管理制度
- 阿里巴巴与四十大盗的故事
- 《CT检查技术》课件-CT检查原理
- 新能源汽车功率电子基础 习题答案汇总(程夕明) 习题集1-6
- 《前列腺增生手术》课件
- 安全出口和疏散指示
- 岐黄天使中医西学中专项128学时试题答案
- 肥料、农药采购服务方案(技术方案)
- 员工安全环保履职能力评估
- 计量管理测试题试题
评论
0/150
提交评论