




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.5函数yAsin(x)的图象学 习 目 标核 心 素 养1.理解参数A、对函数yAsin(x)的图象的影响,能够将ysin x的图象进行变换得到yAsin(x)的图象(重、难点)2.会用“五点法”画函数yAsin(x)的简图;能根据yAsin(x)的部分图象确定解析式(重点)3.求函数解析式时值的确定(易混点)1.通过观察参数A、对函数yAsin(x)图象变化的影响,领会由简单到复杂、由特殊到一般的化归思想,提升学生直观想象素养.2.通过对函数yAsin(x)图象和性质的研究,使学生体会数形结合思想的作用,提升数学抽象素养.1对ysin(x),xR的图象的影响2(0)对ysin(x)的图象的影响3A(A0)对yAsin(x)的图象的影响4由函数ysin x的图象通过变换得到yAsin(x)的图象有两种主要途径:“先平移后伸缩”与“先伸缩后平移”先平移后伸缩ysin x的图象ysin(x)的图象ysin(x)的图象yAsin(x)的图象先伸缩后平移ysin x的图象ysin x的图象ysin(x)的图象yAsin(x)的图象思考:由函数ysin x的图象平移多少个单位得到ysin(x)个单位?为什么?提示平移个单位,而不是平移|单位,原因是图象的变换是针对x而言,并非针对x而言5函数yAsin(x),A0,0中参数的物理意义1函数ysin 4x的图象可由函数ysin x的图象经过怎样的变换得到()A所有点的横坐标变为原来的4倍B所有点的横坐标变为原来的C所有点的纵坐标变为原来的4倍D所有点的纵坐标变为原来的Bysin x图象上所有点的横坐标变为原来的后变为ysin 4x的图象2要得到函数ysin的图象,只需将函数ysin 4x的图象()A向左平移个单位长度 B向右平移个单位长度C向左平移个单位长度 D向右平移个单位长度Bysinsin 4,故只需将ysin 4x图象向右平移个单位即可得到3函数yAsin(x)1(A0,0)的最大值为5,则A_4由已知得A15,故A4.4函数y3sin的频率为_,相位为_,初相为_x频率为,相位为x,初相为.作函数yAsin(x)的图象【例1】用“五点法”画函数y2sin在一个周期内的简图思路点拨:列表、描点、连线、成图是“五点法”作图的四个基本步骤,令3x取0,2即可找到五点解先画函数在一个周期内的图象令X3x,则x,列表如下:X02xy020201本例中把“一个周期内”改为“”,又如何作图?解x,3x,列表如下:3x2x0y120201描点,连线2本例中,把“五点法”改为“图象变换法”,怎样画法?解法一:(先平移再伸缩)ysin xysinysiny2sin.法二:(先伸缩再平移)ysin xysin 3xysiny2sin.1确定函数yAsin(x)的图象一般有两种方法:(1)“五点法”;(2)图象变换法2用“五点法”作函数yAsin(x)的图象,五个点应是使函数取得最大值、最小值以及曲线与x轴相交的点3用“五点法”作函数yAsin(x)图象的步骤是:第一步:列表:x02xy0A0A0第二步:在同一坐标系中描出各点第三步:用光滑曲线连接这些点,形成图象1已知f(x)1sin,画出f(x)在上的图象解列表:x2x0f(x)211112三角函数图象之间的变换【例2】(1)将函数ycos的图象向左平移个单位长度,再向下平移3个单位长度,则所得图象的解析式为_(2)将ysin x的图象怎样变换可得到函数y2sin1的图象?思路点拨:(1)依据左加右减;上加下减的规则写出解析式(2)法一:ysin x纵坐标伸缩横坐标伸缩和平移向上平移法二:左右平移横坐标伸缩纵坐标伸缩上下平移(1)ycos 2x3ycos的图象向左平移个单位长度,得ycoscos(2x)cos 2x,再向下平移3个单位长度得ycos 2x3的图象(2)解法一:(先伸缩法)把ysin x的图象上所有点的纵坐标伸长到原来的2倍,得到y2sin x的图象;将所得图象上所有点的横坐标缩短到原来的倍,得y2sin 2x的图象;将所得图象沿x轴向左平移个单位,得y2sin 2的图象;将所得图象沿y轴向上平移1个单位,得y2sin1的图象法二:(先平移法)将ysin x的图象沿x轴向左平移个单位,得ysin的图象;将所得图象上所有点的横坐标缩短到原来的倍,得ysin的图象;把所得图象上所有点的纵坐标伸长到原来2倍,得到y2sin的图象;将所得图象沿y轴向上平移1个单位,得y2sin1的图象1本例(2)中,若两个函数若互换,那么将函数y2sin1图象怎样变换可得到函数ysin x的图象?解y2sin1y2sinysinysinysin x.2本例(2)中把“ysin x”改为“ycos x”,该怎样变换?解ycos xsin,ycos xsinysinysiny2siny2sin1.由ysin x的图象,通过变换可得到函数yAsin(x)(A0,0)的图象,其变化途径有两条:(1)ysin xysin(x)ysin(x)yAsin(x)(2)ysin xysin xysin(x)sin(x)yAsin(x)提醒:两种途径的变换顺序不同,其中变换的量也有所不同:(1)是先相位变换后周期变换,平移|个单位(2)是先周期变换后相位变换,平移个单位,这是很易出错的地方,应特别注意2(1)要得到ycos的图象,只要将ysin 2x的图象()A向左平移个单位B向右平移个单位C向左平移个单位 D向右平移个单位(2)把函数yf(x)的图象上各点向右平移个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的倍,所得图象的解析式是y2sin,则f(x)的解析式是()Af(x)3cos x Bf(x)3sin xCf(x)3cos x3 Df(x)sin 3x(1)A(2)A(1)因为ycossinsinsin 2,所以将ysin 2x的图象向左平移个单位,得到ycos的图象(2)y2siny3siny3siny3sin3sin3cos x已知函数图象求解析式【例3】(1)已知函数f(x)Acos(x)B的部分图象如图所示,则函数f(x)的解析式为()Ay2cos4 By2cos4Cy4cos2 Dy4cos2(2)函数f(x)Asin(x)中A0,0,|,且图象如图所示,求其解析式思路点拨:由最大(小)值求A和B,由周期求,由特殊点坐标解方程求.(1)A由函数f(x)的最大值和最小值得AB6,AB2,所以A2,B4,函数f(x)的周期为44.又0,所以,又因为点在函数f(x)的图象上,所以62cos4,所以cos1,所以2k,kZ,所以2k,kZ,又|,所以,所以f(x)2cos4.(2)解法一:(五点作图原理法)由图象知,振幅A3,T,所以2,又由点,根据五点作图原理(可判为“五点法”中的第一点)20得,所以f(x)3sin.法二:(方程法)由图象知,振幅A3,T,所以2,又图象过点,所以f3sin0,所以sin0,k(kZ)又因为|,所以k0,所以f(x)3sin.法三:(变换法)由图象知,振幅A3,T,所以2,且f(x)Asin(x)是由y3sin 2x向左平移个单位而得到的,解析式为f(x)3sin3sin.确定函数yAsin(x)的解析式的关键是的确定,常用方法有:(1)代入法:把图象上的一个已知点代入(此时A,已知)或代入图象与x轴的交点求解(此时要注意交点在上升区间上还是在下降区间上)(2)五点法:确定值时,往往以寻找“五点法”中的第一个零点作为突破口“五点”的x的值具体如下:“第一点”(即图象上升时与x轴的交点)为x0;“第二点”(即图象的“峰点”)为x;“第三点”(即图象下降时与x轴的交点)为x;“第四点”(即图象的“谷点”)为x;“第五点”为x2.3.设函数f(x)Asin(x)的部分图象如图所示,则A_3由图象可以看出A2,由T42,由2得1,又2sin2且得,所以A213.三角函数图象与性质的综合应用探究问题1如何求函数yAsin(x)与yAcos(x)的对称轴方程?提示:与正弦曲线、余弦曲线一样,函数yAsin(x)和yAcos(x)的图象的对称轴通过函数图象的最值点且垂直于x轴函数yAsin(x)对称轴方程的求法:令sin(x)1,得xk(kZ),则x(kZ),所以函数yAsin(x)的图象的对称轴方程为x(kZ);函数yAcos(x)对称轴方程的求法:令cos(x)1,得xk(kZ),则x(kZ),所以函数yAcos(x)的图象的对称轴方程为x(kZ)2如何求函数yAsin(x)与yAcos(x)的对称中心?提示:与正弦曲线、余弦曲线一样,函数yAsin(x)和yAcos(x)图象的对称中心即函数图象与x轴的交点函数yAsin(x)对称中心的求法:令sin(x)0,得xk(kZ),则x(kZ),所以函数yAsin(x)的图象关于点(kZ)成中心对称;函数yAcos(x)对称中心的求法:令cos(x)0,得xk(kZ),则x(kZ),所以函数yAcos(x)的图象关于点(kZ)成中心对称【例4】(1)已知函数f(x)sin(0),若ff,且f(x)在区间上有最小值,无最大值,则()AB CD(2)已知函数f(x)sin(x)(0,0)是R上的偶函数,其图象关于点M对称,且在区间上是单调函数,求和的值思路点拨:(1)先由题目条件分析函数f(x)图象的对称性,何时取到最小值,再列方程求的值(2)先由奇偶性求,再由图象的对称性和单调性求.(1)B因为ff,所以直线x是函数f(x)图象的一条对称轴又因为f(x)在区间上有最小值,无最大值,所以当x时,f(x)取得最小值所以2k,kZ,解得8k(kZ)又因为T,所以12.又因为0,所以k1,即8.(2)解由f(x)是偶函数,得f(x)f(x),即函数f(x)的图象关于y轴对称,f(x)在x0时取得最值,即sin 1或1.依题设0,解得.由f(x)的图象关于点M对称,可知sin0,即k,解得,kZ.又f(x)在上是单调函数,所以T,即.2,又0,k1时,;k2时,2.故,2或.1将本例(2)中“偶”改为“奇”,“其图象关于点M对称,且在区间上是单调函数”改为“在区间上为增函数”,试求的最大值解因为f(x)是奇函数,所以f(0)sin 0,又0,所以0.因为f(x)sin x在上是增函数所以,于是,解得0,所以的最大值为.2本例(2)中增加条件“1”,求函数yf2(x)sin 2x,x的最大值解由条件知f(x)sincos 2x.由x得2x,sin 2x,yf2(x)sin 2xcos22xsin 2x1sin22xsin 2x.所以当sin 2x时,ymax.1正弦、余弦型函数奇偶性的判断方法正弦型函数yAsin(x)和余弦型函数yAcos(x)不一定具备奇偶性对于函数yAsin(x),当k(kZ)时为奇函数,当k(kZ)时为偶函数;对于函数yAcos(x),当k(kZ)时为偶函数,当k(kZ)时为奇函数2与正弦、余弦函数有关的单调区间的求解技巧(1)结合正弦、余弦函数的图象,熟记它们的单调区间(2)确定函数yAsin(x)(A0,0)单调区间的方法:采用“换元”法整体代换,将x看作一个整体,可令“zx”,即通过求yAsin z的单调区间而求出函数的单调区间若0,则可利用诱导公式先将x的系数转变为正数,再求单调区间1本节课的重点是五点法作图、图象变换及由三角函数的图象确定解析式,难点是图象变换及由三角函数的图象确定解析式2函数图象的画法有两种:一是五点法;一是图象变换法3A,对函数图象的影响(1)的不同取值,决定着yAsin(x)的起始位置(x0);(2)的取值,决定了函数图象的横坐标的取值情况,进而决定了函数的周期;(3)A的取值情况,决定了函数图象的最高点和最低点,即函数的值域1下列判断正确的是()A将函数ysin的图象向右平移个单位可得到函数ysin x的图象B将函数ysin 3x的图象上所有点的横坐标变为原来的3倍即可得到函数ysin x的图象C将函数ysin图象上所有点的横坐标伸长到原来的2倍,得到函数ysin的图象D函数ysin的图象是由函数ysin 4x的图象向右平移个单位得到的BA错,应该向左平移个单位;C错,横坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年哈尔滨市第四十六中学校招聘教师考试笔试试题(含答案)
- 现场救护专业培训课件教学
- 生产线ERP系统集成创新创业项目商业计划书
- 电子商务平台用户增长与留存创新创业项目商业计划书
- 农副产品种植清洁技术集成创新创业项目商业计划书
- 咖啡香薰产品创新创业项目商业计划书
- 移动智能终端软件创新创业项目商业计划书
- 2025年防城港市市级机关公开遴选考试笔试试题(含答案)
- 2025年东莞市市级机关公开遴选考试笔试试题(含答案)
- 现场急救知识培训新闻稿课件
- 小学生无故旷课问题
- 2024年秋季云南高中学业水平合格考历史试卷真题(含答案详解)
- 中国抗癌协会神经内分泌肿瘤诊治指南(2025年版)解读
- T/CSMT-YB 006-2023精密数字温度计性能测试与评价方法
- DB31/ 653-2012通信基站空调能效限定值
- 组建乐团协议书
- 兼职人员聘用协议书
- GB/T 45595-2025离心式制冷剂压缩机
- 2020公路工程质量检验评定标准第二册机电工程
- 金矿居间合同协议书
- 酒店安全考试试题及答案
评论
0/150
提交评论