实际问题与反比例函数知识讲解.doc_第1页
实际问题与反比例函数知识讲解.doc_第2页
实际问题与反比例函数知识讲解.doc_第3页
实际问题与反比例函数知识讲解.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实际问题与反比例函数一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:l 能根据实际问题中的条件确定反比例函数的解析式,并能结合图象加深对问题的理解.l 根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题,体会数学与现实生活的紧密联系,增强应用意识.学习策略:l 通过函数应用举例,学会数学建模思想;l 反比例函数的图像和性质是分析实际问题的关键.二、学习与应用“凡事预则立,不预则废”科学地预习才能使我们上课听讲更有目的性和针对性我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记知识回顾复习学习新知识之前,看看你的知识贮备过关了吗?1. 一般地,形如 (为常数,)的函数称为反比例函数,其中是 ,是 ,自变量的取值范围是 .2. ()还可以写成 、 的形式.3.某农业大学计划修建一块面积为2106m3的长方形试验田.试验田的长y(单位:m)与宽x(单位:m)的函数解析式是 要点梳理预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习课堂笔记或者其它补充填在右栏要点一、反比例函数的定义1. 基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.2. 一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示.(2)由题目中的已知条件,列出方程,求出待定系数.(3)写出函数解析式,并注意解析式中变量的取值范围.(4)利用函数解析式、函数的图象和性质等去解决问题.要点二、确定反比例函数的关系式1. 当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2. 当工程总量一定时,做工时间是做工速度的反比例函数;3. 在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;典型例题自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三课堂笔记或者其它补充填在右栏类型一、反比例函数实际问题与图象一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示设小矩形的长、宽分别为,剪去部分的面积为,若,则与的函数图象是( )【总结升华】 举一反三:【变式】设从泉港到福州乘坐汽车所需的时间是t(小时),汽车的平均速度为v(千米/时),则下面大致能反映v与t的函数关系的图象是()A. B. C. D. 类型二、利用反比例函数解决实际问题例2.为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量(毫克)与时间(分钟)成正比例,药物燃烧完后,与成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克. 请根据题中所提供的信息解答下列问题: 药物燃烧时关于的函数关系式为_ _,自变量 的取值范围是_ _;药物燃烧后关于的函数关系式为_. 研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_分钟后,学生才能回到教室; 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?类型三、反比例函数的图象和性质例3、南宁市某生态示范村种植基地计划用90亩120亩的土地种植一批葡萄,原计划总产量要达到36万斤(1)列出原计划种植亩数(亩)与平均每亩产量(万斤)之间的函数关系式,并写出自变量的取值范围;(2)为了满足市场需求,现决定改良葡萄品种改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?【总结升华】 例4、心理学家研究发现,一般情况下,在一节40分钟的课中,学生的注意力随教师讲课时间的变化而变化开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力指数随时间(分)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分); (1)分别求出线段AB和双曲线CD的函数关系式,并写出自变量的取值范围; (2)开始上课后第5分钟时与第30分钟时比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了使效果更好,要求学生的注意力指数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?并说明理由【总结升华】 三、测评与总结1.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案。2.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18的条件下生长最快的新品种。如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y()随时间x(小时)变化的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论