




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
XX年高一数学上册函数必背知识点梳理北师大版高一数学学习对大家来说很重要,想要取得好成绩必须要掌握好本上的知识点,为了帮助大家掌握高一数学知识点,下面xx教育网为大家带来北师大版高一数学上册期中必考知识点:函数,希望对大家掌握数学知识有所帮助。、映射、函数、反函数、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射2、对于函数的概念,应注意如下几点:掌握构成函数的三要素,会判断两个函数是否为同一函数掌握三种表示法列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。如果=f,u=g,那么=fg叫做f和g的复合函数,其中g为内函数,f为外函数3、求函数=f的反函数的一般步骤:确定原函数的值域,也就是反函数的定义域;由=f的解析式求出x=f-1;将x,对换,得反函数的习惯表达式=f-1,并注明定义域注意:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起熟悉的应用,求f-1的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。、函数的解析式与定义域、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域求函数的定义域一般有三种类型:有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:分式的分母不得为零;偶次方根的被开方数不小于零;对数函数的真数必须大于零;指数函数和对数函数的底数必须大于零且不等于1;三角函数中的正切函数=tanx,余切函数=tx等应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可已知f的定义域是a,b,求fg的定义域是指满足agb的x的取值范围,而已知fg的定义域a,b指的是xa,b,此时f的定义域,即g的值域2、求函数的解析式一般有四种情况根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式有时题设给出函数特征,求函数的解析式,可采用待定系数法比如函数是一次函数,可设f=ax+b,其中a,b为待定系数,根据题设条,列出方程组,求出a,b即可若题设给出复合函数fg的表达式时,可用换元法求函数f的表达式,这时必须求出g的值域,这相当于求函数的定义域若已知f满足某个等式,这个等式除f是未知量外,还出现其他未知量,等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f的表达式、函数的值域与最值、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元反函数法:利用函数f与其反函数f-1的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如的函数值域可采用此法求得配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法不等式法求值域:利用基本不等式a+ba,b可以求某些函数的值域,不过应注意条“一正二定三相等”有时需用到平方等技巧判别式法:把=f变形为关于x的一元二次方程,利用“0”求值域其题型特征是解析式中含有根式或分式利用函数的单调性求值域:当能确定函数在其定义域上的单调性,可采用单调性法求出函数的值域数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小数,这个数就是函数的最小值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异如函数的值域是,但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2可见定义域对函数的值域或最值的影响3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积最大”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值、函数的奇偶性、函数的奇偶性的定义:对于函数f,如果对于函数定义域内的任意一个x,都有f=-f=f),那么函数f就叫做奇函数正确理解奇函数和偶函数的定义,要注意两点:定义域在数轴上关于原点对称是函数f为奇函数或偶函数的必要不充分条;f=-f或f=f是定义域上的恒等式2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:注意如下结论的运用:不论f是奇函数还是偶函数,f总是偶函数;f、g分别是定义域D1、D2上的奇函数,那么在D1D2上,f+g是奇函数,fg是偶函数,类似地有“奇奇=奇”“奇奇=偶”,“偶偶=偶”“偶偶=偶”“奇偶=奇”;奇偶函数的复合函数的奇偶性通常是偶函数;奇函数的导函数是偶函数,偶函数的导函数是奇函数。3、有关奇偶性的几个性质及结论一个函数为奇函数的充要条是它的图象关于原点对称;一个函数为偶函数的充要条是它的图象关于轴对称如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数若奇函数f在x=0处有意义,则f=0成立若f是具有奇偶性的区间单调函数,则奇函数在正负对称区间上的单调性是相同的。若f的定义域关于原点对称,则F=f+f是偶函数,G=f-f是奇函数奇偶性的推广函数=f对定义域内的任一x都有f=f,则=f的图象关于直线x=a对称,即=f为偶函数函数=f对定义域内的任-x都有f=-f,则=f的图象关于点成中心对称图形,即=f为奇函数、函数的单调性、单调函数对于函数f定义在某区间a,b上任意两点x1,x2,当x1>x2时,都有不等式f>f成立,称f在a,b上单调递增;增函数或减函数统称为单调函数对于函数单调性的定义的理解,要注意以下三点:单调性是与“区间”紧密相关的概念一个函数在不同的区间上可以有不同的单调性单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替单调区间是定义域的子集,讨论单调性必须在定义域范围内注意定义的两种等价形式:设x1、x2a,b,那么:在a、b上是增函数;在a、b上是减函数在a、b上是增函数在a、b上是减函数需要指出的是:的几何意义是:增函数图象上任意两点)、)连线的斜率都大于零由于定义都是充要性命题,因此由f是增函数,且,这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”、复合函数=fg的单调性若u=g在区间a,b上的单调性,与=f在g,g,g)上的单调性相同,则复合函数=fg在a,b上单调递增;否则,单调递减简称“同增、异减”在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程6、证明函数的单调性的方法依定义进行证明其步骤为:任取x1、x2且x1f;根据定义,得出结论设函数=f在某区间内可导如果f>0,则f为增函数;如果f<0,则f为减函数、函数的图象函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识求作图象的函数表达式与f的关系由f的图象需经过的变换=fb沿轴向平移b个单位=f沿x轴向平移a个单位=-f作关于x轴的对称图形=f右不动、左右关于轴对称=|f|上不动、下沿x轴翻折=f-1作关于直线=x的对称图形=f横坐标缩短到原来的,纵坐标不变=af纵坐标伸长到原来的|a|倍,横坐标不变=f作关于轴对称的图形【例】定义在实数集上的函数f,对任意x,R,有f+f=2ff,且f0求证:f=1;求证:=f是偶函数;若存在常数,使求证对任意xR,有f=-f成立;试问函数f是不是周期函数,如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安越咨询课件
- 安装电池课件
- 湖泊的特征与成因
- 2026届内蒙古赤峰市名校九年级化学第一学期期中调研模拟试题含解析
- 私人土地买卖合同中的环保责任与措施协议
- 离婚协议书:婚姻关系解除及共同房产及车辆分割协议
- 离婚协议变更登记与共同财产分割执行协议
- 离婚协议违约金及子女抚养权转移合同
- 夫妻离婚后的共同子女教育资助及成长计划协议
- 离婚协议范本:财产分割与子女抚养、赡养费协议
- 2025年中国航空油料集团招聘笔试模拟题与解析
- 广东省深圳市福田区红岭实验学校(上沙)2025-2026学年八年级上学期开学考试英语试卷(含答案)
- 走心!学校庆祝第41个教师节暨表彰大会校长高水平致辞
- 2025年适老化家居市场分析报告
- 2025年信息系统管理员技术水平考核试题及答案解析
- 社区宣传工作知识培训课件
- 《特殊健康状态儿童预防接种评估门诊与转诊系统建设规范》
- 教师节主题班会课件PPT
- 图形创意(第二版)教材课件汇总完整版ppt全套课件最全教学教程整本书电子教案全书教案合集最新课件汇编
- QC∕T 900-1997 汽车整车产品质量检验评定方法
- 虹桥高铁外墙顾问建议ppt课件
评论
0/150
提交评论