




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.2指数函数(一)教学目标1.掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数.2.能根据指数函数的解析式作出函数图象,并根据图象给出指数函数的性质.3.能根据单调性解决基本的比较大小的问题.教学重点指数函数的定义、图象、性质教学难点指数函数的描绘及性质教学过程一.问题情景问题1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,一个这样的细胞分裂次以后,得到的细胞个数与有怎样的关系.问题2.有一根1米长的绳子,第一次剪去绳长的一半,第二次再剪去剩余绳子的一半,剪去次后绳子剩余的长度为米,试写出与之间的关系.二.学生活动1.思考问题1,2给出与的函数关系?2.观察得到的函数,与函数的区别.3.观察函数,与的相同特点.三.建构数学(用投影仪,把两个例子展示到黑板上)师:通过问题1,2的分析同学们得出与之间有怎样的关系?生1:分裂一次得到2个细胞,分裂两次得到()个细胞,分裂三次得到(),所以分裂次以后得到的细胞为个,即与之间为.生2:第一次剩下绳子的,第二次剩下绳子的(),第三次剩下绳子的(),那么剪了次以后剩下的绳长为米,所以绳长与之间的关系为.(学生说完后在屏幕上展示这两个式子)师:这两个关系式能否都构成函数呢?生:每一个都有唯一的与之对应,因此按照函数的定义这两个关系都可以构成函数.师:(接着把打出来)既然这两个都是函数,那么同学们观察我们得到的这两个函数,在形式上与函数有什么区别.(引导学生从自变量的位置观察).生:前两个函数的自变量都在指数的位置上,而的自变量在底上.师:那么再观察一下,与函数有什么相同点?生:他们的自变量都在指数的位置,而且他们的底都是常数.师:由此我们可以抽象出一个数学模型就是我们今天要讲的指数函数.(在屏幕上给出定义)定义:一般地,函数 ()叫做指数函数,它的定义域是.概念解析1:师:同学们思考一下为什么中规定?(引导学生从定义域为的角度考虑).(先把,显示出来,学生每分析一个就显示出一个结果)生:若,则当时, 没有意义.若,则当取分母为偶数的分数时,没有意义.例如:.若,则,这时函数就为一个常数1没有研究的价值了.所以,我们规定指数函数的底.师:很好,请坐.我们既然知道了底的取值范围,那么看这样一个问题: 问题已知函数为指数函数,求的取值范围(屏幕上给出问题)生:由于作为指数函数的底因此必须满足:即概念解析:师:我们知道形如()的函数称为指数函数通过观察我们发现:前没有系数,或者说系数为既;指数上只有唯一的自变量;底是一个常数且必须满足:那么,根据分析同学们判断下列表达式是否为指数函数?(在屏幕上给出问题)问题2,生:(答)为指数函数不是生: 我不同意,应该是指数函数,因为师:很好,我们发现有些函数表面上不是指数函数,其实经过化简以后就变成了指数函数所以不要仅从表面上观察,要抓住事物的本质师:上面我们分析了指数函数的定义,那么下面我们就根据解析式来研究它的图象和性质根据解析式我们要作出函数图象一般有哪几个步骤?生:(共同回答)列表,描点,连线师:好,下面我请两个同学到黑板上分别作出,和,的函数图象(等学生作好图并点评完以后,再把这四个图用几何画板在屏幕上展示出来)师:那么我们下面就作出函数:, ,的图象-师:通过这四个指数函数的图象,你能观察出指数函数具有哪些性质?(先把表格在屏幕上打出来,中间要填的地方先空起来,根据学生的分析一步步展示出来)生:函数的定义域都是一切实数,而且函数的图象都位于轴上方师:函数的图象都位于轴上方与有没有交点?随着自变量的取值函数值的图象与轴是什么关系?生:没有随着自变量的取值函数的图象与轴无限靠近师:即函数的值域是:那么还有没有别的性质?生:函数、是减函数,函数、是减函数师:同学们觉的他这种说法有没有问题啊?(有)函数的单调性是在某个区间上的,因此有说明是在哪个范围内又,那么上述的结论可以归纳为:生:当时,函数在上是减函数,当时,函数在上是增函数师:很好,请做!(提问生)你观察我们在作图时的取值,能发现什么性质?生:当自变量取值为时,所对的函数值为一般地指数函数当自变量取时,函数值恒等于师:也就是说指数函数恒过点,和底的取值没有关系那么你能否结合函数的单调性观察函数值和自变量之间有什么关系?生3:由图象可以发现:当时,若,则;若,则.当时,若,则;若,则.师:刚才是我们通过每个函数的图象得到共同的性质,那么同学们在观察函数图象之间有没有什么联系?生4: 函数与的图象关于轴对称,函数与的图象关于轴对称,所以是偶函数.(? ? ? ?)师:前面的结论是正确的,同学们说后面那句话对吗?生:(共同回答)不对,因为函数的奇偶性是对一个函数的,所以没有这个性质.师:由此我们得到一般的结论, 函数与的图象关于轴对称.师:很好,那么我们把同学们刚才归纳的指数函数的性质综合起来,放到一张表格内.图象性质定义域值域定点单调性在上是减函数在上是增函数取值情况若,则若,则若,则若,则对称性函数与的图象关于轴对称巩固与练习根据指数函数的性质,利用不等号填空(在屏幕上给出练习,让学生口答),四.数学运用例1.比较大小 解: 考虑指数函数.因为所以在上是增函数.因为所以考虑指数函数.因为所以在上是减函数.因为所以由指数函数的性质知,而 所以例2已知,求实数的取值范围;已知,求实数的取值范围解:因为,所以指数函数在上是增函数由,可得,即的取值范围为因为所以指数函数在上是减函数,因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中物理 第十一章 机械振动 5 外力作用下的振动说课稿2 新人教版选修3-4
- 证监会诚信管理办法
- 合同协议范文番禺区租赁合同3篇
- 蛋白肽储存管理办法
- 垃圾分类知识试题库及参考答案
- 护理不良事件试题(附答案)
- 叉车培训理论知识试题及答案
- 粮食应急点管理办法
- epco项目管理办法
- 2025年安全评价师考试必-备知识点梳理
- 核能质保监查员考试题及答案
- 青海“8·22”川青铁路尖扎黄河特大桥施工绳索断裂事故案例学习安全警示教育
- 9.3纪念抗日战争胜利80周年阅兵式观后感
- 2025年70周岁以上老年人换长久驾照三力测试题库(含答案)
- 人才匹配算法的优化
- 兵团普通职工考试试题及答案
- 时事政治考试题(含答案)
- 生物标本课程讲解
- 专八备考单词讲解
- 面试必 备:援藏事业编面试题目全解析
- 2024-2025学年七年级数学下学期期末测试卷(人教版)原卷版
评论
0/150
提交评论