




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.圆锥曲线方程 知识要点一、椭圆方程1. 椭圆方程的第一定义:平面内与两个定点F1,F2的距离的和等于定长(定长通常等于2a,且2aF1F2)的点的轨迹叫椭圆。(1)椭圆的标准方程:i. 中心在原点,焦点在x轴上:. ii. 中心在原点,焦点在轴上:. 注:A.以上方程中的大小,其中;B.在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。一般方程:.椭圆的标准方程:的参数方程为(一象限应是属于). 椭圆的性质 顶点:或.轴:对称轴:x轴,轴;长轴长,短轴长.焦点:或.焦距:.准线:或.离心率:.【,且越接近,就越接近,从而就越小,对应的椭圆越扁;反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆。当且仅当时,两焦点重合,图形变为圆,方程为。】焦(点)半径:i. 设为椭圆上的一点,为左、右焦点,则ii.设为椭圆上的一点,为上、下焦点,则由椭圆第二定义可知:归结起来为“左加右减”.注意:椭圆参数方程的推导:得方程的轨迹为椭圆. 通径:垂直于x轴且过焦点的弦叫做通径.坐标:和 焦点三角形的面积:若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得)。若是双曲线,则面积为。(3) 共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是 我们称此方程为共离心率的椭圆系方程.2. 椭圆的第二定义:平面内到定点F的距离和它到一条定直线L(F不在L上)的距离的比为常数e()的点的轨迹叫做椭圆。其中定点F为椭圆的焦点,定直线L为椭圆焦点F相应的准线。二、双曲线方程1. 双曲线的第一定义:平面内到到两个定点F1,F2的差的绝对值等于定长(定长通常等于2a,且2a1)的点的轨迹叫做双曲线。其中定点F为双曲线的焦点,定直线L为双曲线焦点F相应的准线。三、抛物线方程(1)抛物线的概念平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。方程叫做抛物线的标准方程。注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(,0),它的准线方程是 ;(2)抛物线的性质设,抛物线的标准方程、类型及其几何性质:图形焦点准线方程范围对称轴轴轴顶点 (0,0)离心率焦半径通径2p2p2p2p焦点弦x1+x2+px1+x2+py1+y2+py1+y2+p注:通径(过焦点且垂直于坐标轴的线段)为2p,这是过焦点的所有弦中最短的. (或)的参数方程为(或)(为参数).四、圆锥曲线的统一定义1. 圆锥曲线的统一定义:平面内到定点F和定直线的距离之比为常数的点的轨迹.当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线;当时,轨迹为圆(,当时).【弦长公式】2.椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义1到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2与定点和直线的距离之比为定值e的点的轨迹.(0e1)1到两定点F1,F2的距离之差的绝对值为定值2a(02a1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:(MMF1+MF2=2a,F 1F22a.点集:MMF1-MF2.=2a,F2F22a.点集M MF=点M到直线l的距离.图形方程标准方程(0)(a0,b0)参数方程(t为参数)范围axa,byb|x| a,yRx0中心原点O(0,0)原点O(0,0)顶点(a,0), (a,0), (0,b) , (0,b)(a,0), (a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(c,0)F1(c,0), F2(c,0)准 线x=准线垂直于长轴,且在椭圆外.x=准线垂直于实轴,且在两顶点的内侧.x=-准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c (c=)2c (c=)离心率e=1【备注1】双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.(2)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.【备注2】抛物线:(1)设抛物线的标准方程为=2px(p0),则抛物线的焦点到其顶点的距离为,顶点到准线的距离,焦点到准线的距离为p.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版商铺租赁合同转让及租期延长补充协议
- 2025滨湖菊园园林园艺产品销售与养护服务全面合同
- 2025房地产项目智能家居系统升级精装修工程合同(项目编号:SG20250003)
- 2025冻猪白条冷链仓储配送与电商平台合作合同
- 2025橱柜家具销售合同范本专业定制家居解决方案
- 2025年集装箱租赁及运输代理合同范本
- 2025年文化旅游项目成本预算及控制建议合同范本
- 2025定向智能交通系统合作协议书范本:智慧城市建设
- 2025版唐代离婚协议书:针对唐代家庭财产继承的离婚协议
- 2025房地产总经理任命书及年度工作计划与考核协议
- 2025至2030中国人造土壤市场经营形势与未来发展方向研究报告
- 特种设备突发事件应急处置技术指南 第5部分:起重机械-地方标准
- 友邦资讯面试题目及答案
- 2025年社区工作者考试真题库及答案
- 血症中医护理方法
- 飞灰处置再生资源化利用项目可行性研究报告模板-立项备案
- GB/T 15620-2025镍及镍合金实心焊丝和焊带
- 张姣飞时间管理课件
- 牧昆:亚朵星球怎样用内容打增量 洞察无法逃离日常用真人秀的思路打增量
- 养老机构出入管理办法
- 中医康复科业务学习课件
评论
0/150
提交评论