




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
培优点五 导数的应用一、变化率及导数的概念例1:已知,等于()ABCD【答案】C【解析】,故选C二、导数的几何意义例2:已知直线与曲线相切,则的值为()ABCD【答案】B【解析】设切点,则,又,故选B三、导数的图象例3:若函数的导函数的图象如图所示,则的图象可能()ABCD【答案】C【解析】由,可得有两个零点,且,当或时,即函数为减函数;当时,函数为增函数,即当,函数取得极小值,当,函数取得极大值,故选C四、导数的极值例4:已知函数有两个极值点,则的范围为【答案】【解析】由题意可知:函数,求导,由函数有两个极值点,则方程有两个不相等的根,即,解得或,的范围,故答案为对点增分集训一、选择题1设函数,则使得成立的的取值范围是()ABCD【答案】B【解析】函数为偶函数,且在时,导数为,即有函数在单调递增,等价为,即,平方得,解得,所求的取值范围是故选B2设函数是奇函数的导函数,当时,则使得成立的的取值范围是()ABCD【答案】D【解析】由题意设,则,当时,有,当时,函数在上为增函数,函数是奇函数,函数为定义域上的偶函数,在上递减,由得,不等式,或,即有或,使得成立的的取值范围是,故选D3函数的定义域为,对任意的,都有成立,则不等式的解集为()ABCD【答案】A【解析】根据题意,令,则,函数在上单调递减,而,不等式,可化为,即不等式的解集为,故选A4已知定义在实数集上的函数满足,且的导函数在上恒有,则不等式的解集为()ABCD【答案】A【解析】令,则,又的导数在上恒有,恒成立,是上的减函数,又,当时,即,即不等式的解集为,故选A5设函数是定义在的可导函数,其导函数为,且有,则不等式的解集为()ABCD【答案】C【解析】由,得,令,则当时,得,即在上是减函数,不等式化为,即,即,故选B6若函数的定义域是,则不等式的的解集为()ABCD【答案】A【解析】构造函数,则不等式可转化为,则,则函数在上单调递减,则的解集为,则不等式的解集为故选A7已知,若在区间上有且只有一个极值点,则的取值范围是()ABCD【答案】B【解析】,若在上有且只有一个极值点,则在上有且只有一个零点,显然,问题转化为在上有且只要一个零点,故,即,解得,故选B8设函数,对于满足的一切值都有,则实数的取值范围为()ABCD【答案】D【解析】满足的一切值,都有恒成立,可知,满足的一切值恒成立,实数的取值范围为故选D二、填空题9函数的图象在处的切线方程为,则【答案】【解析】由已知切线在切线上,所以,切点处的导数为切线斜率,所以,所以故答案为10已知函数,如果对任意的,都有成立,则实数的取值范围是【答案】【解析】求导函数,可得,则在单调递减,在上单调递增,对任意的,都有成立,故答案为三、解答题11设函数,记(1)求曲线在处的切线方程;(2)求函数的单调区间;(3)当时,若函数没有零点,求的取值范围【答案】(1);(2)见解析;(3)【解析】(1),则函数在处的切线的斜率为,又,函数在处的切线方程为,即(2),当时,在区间上单调递增;当时,令,解得;令,解得,综上所述,当时,函数的增区间是;当时,函数的增区间是,减区间(3)依题意,函数没有零点,即无解,由(2)知:当时,函数在区间上为增函数,区间上为减函数,只需,解得实数的取值范围为12已知函数(1)当时,求函数的单调区间和极值;(2)若在上是单调增函数,求实数的取值范围【答案】(1)函数的单调递减区间是,单调递增区间是,极小值是;(2)【解析】(1)函数,函数的定义域为,当时,当变化时,和的值的变化情况如下表:由上表可知,函数的单调递减区间是,单调递增区间是,极小值是(2)由,得若函数为上的单调增函数,则在上恒成立,即不等式在上恒成立,也即在上恒成立令,则,当时,在上为减函数,的取值范围为13已知函数(,)若函数在处有极值(1)求的单调递减区间;(2)求函数在上的最大值和最小值【答案】(1)函数的单调递减区间;(2),【解析】,依题意有,即,得,所以,由,得,所以函数的单调递减区间(2)由(1)知,令,解得,随的变化情况如下表:由上表知,函数在上单调递减,在上单调递增故可得,14设函数,其中(1)求的单调区间;(2)当时,证明不等式:【答案】(1)函数的单调减区间是,函数的单调增区间是;(2)证明见解析【解析】(1)由已知得函数的定义域为且,令,解得,当变化时,的变化情况如下表:由上表可知,当时,函数在内单调递减;当时,函数在内单调递增,函数的单调减区间是,函数的单调增区间是(2)设,对可导,得,当时,在上是增函数,当时,同理令,则,所以在上递减,故,所以,15已知函数(1)若函数在其定义域上是增函数,求实数的取值范围;(2)当时,求出的极值;(3)在(1)的条件下,若在内恒成立,试确定的取值范围【答案】(1);(2),;(3)【解析】(1)函数,则,函数在上是单调增函数,在上恒成立,即在上恒成立,当时,当且仅当,即时等号成立,的取值范围是(2)当时,当或时,;当时,在和上是增函数,在上是减函数,(3)设,且,在内为增函数,在内恒成立,解得,16已知函数,(1)当,求的最小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于EVA和实物期权法的新华都特种电气公司企业价值评估
- 钢-ECC组合结构栓钉剪力键抗剪性能分析
- 汉服儿童课件
- 一年级期末考试作文我的课余生活400字8篇范文
- 我美丽因为我自信400字10篇
- 口腔局部用氟防龋材料
- 120急救站调度培训
- 汉字演变儿童讲解课件
- 2025至2030中国杀螨剂行业深度研究及发展前景投资评估分析
- 2025至2030中国智能家庭摄像机行业发展趋势分析与未来投资战略咨询研究报告
- 公路技术状况检测与评定-公路技术状况评定
- 酒店服务礼仪培训课件
- 乡村医生从业管理条例
- 北京第八十中学英语新初一分班试卷
- 酒店OTA学习三部曲(侧重携程)
- 【园林测量】试题及答案
- 潮汕方言语音的内部差异及其成因
- 人教版小学语文一年级到六年级课本古诗
- 2023年气象服务行业市场突围建议及需求分析报告
- 四年级下册健康成长教案
- 手太阴肺经课件-
评论
0/150
提交评论