第三章重力测量方法.ppt_第1页
第三章重力测量方法.ppt_第2页
第三章重力测量方法.ppt_第3页
第三章重力测量方法.ppt_第4页
第三章重力测量方法.ppt_第5页
免费预览已结束,剩余43页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章重力测量方法 在固体地球物理学和海洋学研究 人造卫星精密轨道计算和其他空间技术中 地球重力场是必要数据 就固体地球物理学来说 从地幔过程产生的长波信号 到大陆岩石圈和海底地壳的局部特征 无不反映在地球重力场中 为了解释有关地球物理性质 地球内部构造和动力过程的信息 探求岩石圈下对流的证据来解释板块运动 必须深化对于地球重力场及其变化的认识 在海洋学中 实际海面与大地水准面的差距 表示与大洋总环流有联系的近洋面压力梯度 为了由海洋卫星测高结果求定大洋环流 需要有精确的海洋大地水准面 卫星大地测量定位的精度取决于卫星定轨的精度 而重力场模型则是精密定轨的基础 大地测量采用各种不同的仪器和观测技术来获取重力场信息 地面 海面重力测量和机载重力测量是用重力仪直接感触重力场 由地面跟踪卫星技术是利用重力场所引起的卫星轨道摄动来反求重力场 卫星雷达测高技术是利用所测定的海洋大地水准面反求重力场 由高一低模式的卫星跟踪卫星 简称卫一卫跟踪 技术测定扰动重力场或低一低模式的卫一卫跟踪技术测定两卫星之间的相对速度变化所求得的引力位变化来确定位系数 利用机载或星载重力梯度仪求得的引力位二阶导数张量来求定位系数 3 1重力的归化在地球表面测量的重力g 不能直接和椭球面上的正常重力 比较 必须将g归算到大地水准面上 在确定大地水准面形状的基本原理中 有两个前提 一个是大地水准面外部必须没有质量 另一个是所用的实测重力值g应当是大地水准面上的数值g0 但事实上大地水准面外部有大陆存在 而观测也是在地面上进行的 为了满足上述要求 必须将地球进行一些调整 使得全部质量都包含在大地水准面内部 同时将重力值归算到大地水准面上 然后再来确定大地水准面形状 由于进行了调整 因此有些书上称这样确定出来的大地水准面为调整后的大地水准面形状 或调整后地球形状 调整后地球与真正地球的区别就是将所有高出大地水准面的质量去掉 将它们移到大地水准面内部或大地水准面下面某一位置 但是在移动质量的时候应考虑到不要改变地球的总质量 质心位置以及大地水准面的形状 目前虽然归算方法很多 但没有一种归算能符合所有要求 所谓重力归化 就是将地球调整以后的影响计算出来 在重力观测值中加以改正 这种归化方法随地形质量的处理方法不同而有所不同 重力归化的三个主要目的 1 求定大地水准面 2 内插和外推重力值 3 研究地壳重力归化包括以下步骤 首先将大地水准面外部的地形质量全部去掉 或者移到海水面以下去 然后再将重力站从地面降低到大地水准面上 3 2辅助公式 计算一个半径为a 高为b的匀质圆柱在P点的垂直引力A和位U 设P点位于其轴上 离基底的高为c 图3 2 P点在圆柱外首先假定P在圆柱之外上方 c b 则根据计算位的一般公式 1 11 有 P点在圆柱内假设P点积圆柱内 c b 用z c面将圆柱分成1和2两部分 图3 3 计算U作为这两部分的和 Ui U1 U2 扇形区域和方块区域以上的公式用于图2 22所示的扇形或方块 则对于半径为a 圆心角为 A 3 1空间改正及空间重力异常 空间改正是将海拔高程为H的重力点上的重力观测值g归算成大地水准面上A0点的重力值g0 归算时不去考虑地面和大地水准面之间的质量 只考虑高度对重力的改正 如图 为了简便起见 在推导改正值时 可以把大地水准面看成是半径为R的不旋转的均质圆球 即在重力中不顾及离心力 由于空间改正值很小 这样假设对结果不会产生什么影响 假设在右图中 A为地面上一点 A0为大地水准面上相应的投影点 A点的高程为H 我们要将A点的重力加以改正归算到大地水准面上 求出A0点的重力值 现求其改正数 我们知道 均质圆球是对称于球心的 故其重心就在球心O上 均质圆球的引力为 这就是将地面重力值归算到大地水准面上应加的改正值 称为空间改正 将地球的平均重力值 和地球的平均半径R代入上式 最后求得 式中高程H以米为单位 F以毫伽为单位 显然高程愈高 重力值就愈小 当高程相差3米 空间改正约为1毫伽 第二项在一般情况下可以不必考虑 但在高程特别大曲地区 例如珠穆朗玛峰地区 必须顾及 因此通常可以将上式写成 3 3布格改正及布格重力异常 在空间改正中 没有顾及地面和大地水准面之间的质量对重力的影响 重力值的布格改正的目的是把地形质量全部移去 也就是将大地水准面的外部质量移掉 布格片假设重力点P的周围是完全水平的面 图3 5 设地球表面和大地水准面之间的质量密度为常数 那末 所谓布格片的引力A 可以令 3 6 式中的a 而求出 因为该片可以 视为圆柱 它的高度b h 半径为无穷大 用熟悉的公式得出一个无穷大的布格片引力为 移去布格片相当于从观测重力值中减去引力 这称为 不完全布格改正 完全的重力改正 必须将测站P从地面降低到大地水准面上的P0点 这就要用到空间改正 这个移去地形质量和应用空间改正的综合方法 称为 完全布格改正 它所得出的结果是在大地水准面上的布格重力值 在实用中 通常把布格改正分成布格片和地形改正两项 后者数值很小 即使在三千米的山区 地形改正也只有50毫伽的数量级 地形改正的计算 可采用模板法或网格法 通常计算的半径达到168公里即可 局部地形改正在平坦地区可达0 1 1 0mGal 在高山地区则可达10 100mGal 如果地面观测的重力值g中只加入空间改正和局部地形改正 再与正常椭球面上相应的正常重力值相减 其结果称为法耶重力异常 即 g0 F g At F 3 4均衡理论 如果大地水准面以上的质量是引起重力异常的主要原因的话 那末加以布格改正 或地形改正 去掉了重力场内的主要不规则部分 布格异常应该很小 但是实际相反 在山区布格异常总是负值 而且其绝对值也相当大 要解释这种现象 只能说山区下面的质量有所不足 地形的质量以某种方式被补偿 十九世纪普拉特在印度进行弧度测量时发现愈靠近喜马拉雅山 垂线偏差愈大 这个现象好象是由于喜马拉雅山和西藏高原高出海水面的引力物质过剩 和南部印度洋引力物质不足所引起的 但是 按可见地形估算了这些质量的影响之后 又发现按地形计算的垂线偏差 28 要比用天文大地测量方法测定的垂线偏差 5 大得多 普拉特 Pratt 1855年提出了他的地壳均衡学说 认为喜马拉雅山为其下面的质量亏缺所抵偿 而且这种亏缺是恒定的 一直延伸到一定的深度 正是山下存在有低密度区 抵偿了他本身的引力效应 所以按山的质量计算的垂线偏差比实际值要大 在普拉特的地壳均衡学说发表后两个月 英国的艾里 Airy 提出了他的地壳均衡学说 其论点是 应当认为每一地块都是浮在它下面的地层之上 就象筏子一样 而且地块在外部突起部分越高 则陷入部分愈深 两种地壳均衡学说都认为高山之下存在低密度区 其争论在于低密度区的型式 艾里认为均匀密度的 地壳根 的厚度有横向变化 普拉特则认为均匀厚度的地壳和上地幔的密度有横向变化 美国的达顿 Dutton 于1889年提出了 地壳均衡 这个词 尽管普拉特和艾里提出了两种不同的均衡模式 但他们都论证了某一深度处 抵偿深度 的压力是相等的 地球的外层处于均衡 除非是受到侵蚀和沉积作用的扰动 两者的最终计算结果差别不大 美国的海福特 Hayford 在地壳均衡抵偿已经充分完成的假定下 采用普拉特抵偿模式 计算了美国507个大地点上的均衡抵偿改正 使得这些点的平均垂线偏差由32 64 减小到3 04 他曾经就300和100公里之间的若干个抵偿深度进行了计算 最后证实抵偿深度120 5公里所得的剩余垂线偏差为最小 但在后来的工作中 又将抵偿深度减小到102公里 普拉特一海福特系统普拉特提出概念 后来由海福特引进数学公式 系统地用于大地测量 它认为在地下某一深度处 有一等压面 由海水面到等压面的距离几乎处处相等 这个等压面称为补偿面或均衡面 在补偿面以下密度是均匀的 将地壳分割成许多截面相等的柱体 同一个柱体中的密度是相等的 不同柱体具有不同的密度 在山区柱体密度小些 在海洋柱体密度就大些 但各个柱体的质量是相等的 设D为补偿面的深度 它从海水面起算 设高度为D的圆柱密度为 0 则高度为D h的圆柱的密度为 h表示地形的高 它满足下列方程式 等质量的条件 普拉特一海福特系统 则高出海面的柱体实际密度 稍小于正常值 0 因此就有质量亏损 根据 3 23 式 抵偿密度为 在海洋中 低于海面的柱体密度 稍大于正常值 0 等质量的条件为 海福特与普拉特的模式略有不同 他认为海水面以上的那一部分地壳的密度 0到处都是一样的 山的质量被海水面以下地壳的亏损密度所补偿 如图因为柱体II的高程h 0 则海水面以下的物质密度不需任何补偿 它的密度就是地壳的平均密度 0 而柱体I的高程为并h 高出海水面的那一部分物质密度仍为地壳的平均密度 0 这样柱体I在海水面以下的那一部分物质密度就不是 0 一定比 0小 假设为 若用D表示抵偿面的深度 则可写出下列等式 D 0 h 0 D 则 它就是把高出海水面的质量移到海水面至抵偿面之间 使之补偿成平均密度时需要增加的密度 在海水面至抵偿面之间每个柱体经过这样的密度抵偿 那么地壳就保持了均衡 艾里一海斯卡涅系统这种模型是由艾里提出 而由海斯卡涅给出实际应用于大地测量的精密公式 它认为地壳由厚度不同的轻的岩石所组成 各个柱体漂浮在密度较大的岩浆上 并处于均衡状态 各个柱体的密度是一样的 它露出岩浆的部分和它陷入岩浆部分是对应的 突起部分越高 则陷入部分愈深 显然 山区陷入一定较深 海洋陷入一定较浅 在山的下面有 山根 根组t 在海洋有 反山根 抵偿根t 质量的过剩和不足 是由各个柱体陷入岩浆部分的高低来补偿 艾里学说也可用补偿面来讨论 这个补偿面就是通过最深柱体的底面 艾里一海斯卡涅系统 范宁梅尼兹系统上面所讨论的两种系统都是非常理想化了的东西 它所假设的补偿是严格的局部补偿 也就是沿着垂直圆柱进行补偿 这种以质量自由变迁为前提的假设 在实际上要达到严格 显然是不现实的 由于这一原因 范宁梅尼兹将艾里的漂浮学说 在1931年作了修改 引进了区域补偿来代替局部补偿 这两种补偿的主要差异如图3 10所示 按照范宁榔尼兹的理论 地形质量是作为一种加在不断裂而有弹性的地壳层上的负荷 虽则范宁梅尼兹对艾里理论的改进更为实际 但比较复杂 大地测量人员很少用它 因为大家知道 任何均衡系统 如始终一贯地采用 它更能满足大地测量要求 地球物理和大地测量的一些现象说明 地球大概有90 的均衡补偿 但仅从重力测量的现象 至少还难以决定 究竟是哪一种模型能最好地考虑到这种补偿 虽然 地震结果表明是艾里型补偿 有些地方又似乎符合普拉特型 范宁梅尼兹系统 3 温宁 量乃兹 Veni 8MetnszF A 均衡模型温宁 曼乃兹修正了艾里的假设 将完全 均匀 局部补偿调整为完全 均匀 区域补偿 把池壳当成弹性薄板 山脉加载在弹性湾板上 山脉的质量把地壳向下压弯 地壳向下弯曲陷入壳下层的流体物质上 形成与山脉相对应的区域山根 山根造成的补偿质量等于山脉的地形质量 图3 19 计算表明当高山的横向宽度大于25km时 才能将莫霍面压弯 这已为实践所证BLu温十 5月茁均衡模9 t目艾里和温宁 曼乃兹模型假说的基本持点都是山很陷入岩浆中 不同的是温宁 曼乃兹引入了大区域性的补偿概念 以弹性理论为基础 克服了地壳划分为许多独立柱体的困难 从理论上更为合理 但计算更为复杂 所以实际工作中很少采用温宁 曼乃兹模型 对重力值加入均衡改正 就是求出各个柱体的抵偿密度为 的质量对计算点的引力 目的是依据某种均衡模型调整地壳 它不象布格改正那样 把地形质量完全去掉 而是将这些质量移到大地水准面的内部去 以弥补山下的质量亏损 在普拉特和海福特均衡模型中 地形质量被填补在海水面与补偿面之间 使地壳的密度从原来的值 增加到标准值 0 在艾里 海斯卡涅模型中 地形质量用来补填大陆的根 把它的密度从 0 2 67提到 1 3 27克 厘米3 换句话说 就是地形部分移去时 补偿也同时去掉 最后结果是有一个想象的密度为 0的均匀地壳 它的厚度为D 普拉特 海福持 或T 艾里 海斯卡涅 所以 总的来说是采用三个步骤l 移去地形部分 2 替换补偿部分 3 加空间改正归化到大地水准面上 3 5均衡改正 普拉特 海福特系统这一方法和地形改正一样 补偿的吸引出仍用下式计算 b为柱体的高p93c为P点到基底的高 分别加上布格 均衡 空间改正 海洋测站因为测站在大地水淮面上 3 42 式中的AT和F项都将为零 但是Ac项将更复杂 在普拉特 海福特模型中 计算方法如下 海洋下面圆柱高为D h 其增多的质量如 3 28 式所表达 将它移去 用来填补高为h 的海洋圆柱 使它的密度达到 0 用公式表示为 在艾里 海斯卡涅模型中 补偿根的过剩质量 1 0 用来补足海洋达到正常密度 0 其相应的数值也由 3 43 式计算 如果有一种均衡系统严格符合真实情况 那末 均衡改正就能达到将地壳完全调整的目的 于是 地壳变成平滑而均匀 因此 选择一个适当的参考模型计算 则均衡重力异常值将为零 即 3 45 式为零 中国区域空间异常 中国区域布格异常 中国区域均衡异常 中国区域地形图 中国区域地形 异常图 前几节已经讲了四种重力归算方法 现在来比较一下这些归算方法的优缺点 比较的标准是看那一种方法最能符合前面所提出的调整地球的四点要求 即1 大地水准面外部没有质量 2 不改变地球质心的位置 也就是说仍要满足椭球体和大地水准面质心相重合的条件 3 地球的总质量不变 4 不改变大地水准面的形状 A 3 2各种重力归算的比较 为了达到上述目的 现在首先来解释一下四种重力归算方法的物理意义 并用下列符号表示各种归算后的重力值 其中 1g为空间改正 2g为布格板改正 3g为局部地形改正 4g为均衡改正 a 表示在A点的重力观测值 b g空 将A点的重力加上空间改正后 相当于将A点下降到海水面上 但不改变影响A点的地壳质量引力 这就好像把高出海水面的质量按照原来的状态压入海水面内 c g法 在g空上再加上局部地形改正后 相当于将A点周围地形除去凸出部分和填平凹下部分 使得A点周围地形成为乎坦状态 d 当重力点离开平面层的距离和平面层的半径比起来很小时 平面层的引力与重力点到层面的距离无关 因此可以将厚度为H的平面层分为无限薄的许多层 并将它们全部压缩成为一片无限薄的平面层 这样对A的引力作用不变 所以 c 和 d 的意义是一样的 在重力观测值中加上布格改正 就相当于将高出大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论