



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题三 数列 第1讲 等差数列、等比数列的基本问题练习 理一、填空题1.(2015南通模拟)在等差数列an中,a13a3a1510,则a5的值为_.解析设数列an的公差为d,a1a152a8,2a83a310,2(a53d)3(a52d)10,5a510,a52.答案22.在等比数列an中,已知a1a38,a5a74,则a9a11a13a15_.解析设等比数列an的公比为q,由已知,得解得q4.又a9a11a1q8a3q8(a1a3)q882,a13a15a1q12a3q12(a1a3)q1281,所以a9a11a13a15213.答案33.若等差数列an满足a7a8a90,a7a100,则当n_时,an的前n项和最大.解析根据题意知a7a8a93a80,即a80.又a8a9a7a100,a90,当n8时,an的前n项和最大.答案84.等差数列an的公差为2,若a2,a4,a8成等比数列,则an的前n项和Sn等于_.解析由a2,a4,a8成等比数列,得aa2a8,即(a16)2(a12)(a114),a12.Sn2n22nn2nn(n1).答案n(n1)5.(2016宿迁调研)设各项都是正数的等比数列an,Sn为前n项和,且S1010,S3070,那么S40等于_.解析依题意,数列S10,S20S10,S30S20,S40S30成等比数列,因此有(S20S10)2S10(S30S20),即(S2010)210(70S20),故S2020或S2030.又S200,因此S2030,S20S1020,S30S2040,则S40S3070150.答案1506.若a,b是函数f(x)x2pxq(p0,q0)的两个不同的零点,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则pq_.解析由题意知:abp,abq,p0,q0,a0,b0.在a,b,2这三个数的6种排序中,成等差数列的情况有a,b,2;b,a,2;2,a,b;2,b,a;成等比数列的情况有:a,2,b;b,2,a.或解之得:或p5,q4,pq9.答案97.(2016全国卷)设等比数列满足a1a310,a2a45,则a1a2an的最大值为_.解析设等比数列an的公比为q,解得a1a2an,当n3或4时,取到最小值6,此时取到最大值26,所以a1a2an的最大值为64.答案648.等差数列an的前n项和为Sn,已知S100,S1525,则nSn的最小值为_.解析设数列an的首项和公差分别为a1,d,则则nSnnn2.设函数f(x)x2,则f(x)x2x,当x时,f(x)0;当x时,f(x)0,所以函数f(x)minf,但67,且f(6)48,f(7)49,因为4849,所以最小值为49.答案49二、解答题9.(2016全国卷)已知数列an的前n项和Sn1an,其中0.(1)证明an是等比数列,并求其通项公式;(2)若S5,求.(1)证明由题意得a1S11a1,故1,a1,a10.由Sn1an,Sn11an1,得an1an1an,即an1(1)an,由a10,0得an0,所以.因此an是首项为,公比为的等比数列,于是an.(2)解由(1)得Sn1.由S5得1,即.解得1.10.已知数列an满足a11,an13an1,(1)证明an是等比数列,并求an的通项公式;(2)证明.证明(1)由an13an1,得an13.又a1,所以an是首项为,公比为3的等比数列.an,因此an的通项公式为an.(2)由(1)知.因为当n1时,3n123n1,所以.于是1.所以.11.数列an的前n项和为Sn,a11,且对任意正整数n,点(an1,Sn)在直线2xy20上.(1)求数列an的通项公式;(2)是否存在实数,使得数列为等差数列?若存在,求出的值;若不存在,请说明理由.解(1)由题意,可得2an1Sn20.当n2时,2anSn120.,得2an12anan0,所以(n2).因为a11,2a2a12,所以a2.所以an是首项为1,公比为的等比数列.所以数列an的通项公式为an.(2)由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影叙事技巧与剧情发展考核试卷
- 2025标准商业合作合同范本
- 2025艺术馆合作协议的合同
- 2025标准商业办公室租赁合同协议书
- 房地产系统课件
- 202A个人房屋租赁合同范本
- 2025版权授权合同范本下载
- 应届生设计师职业晋升指南
- 2025版车位租赁合同范文
- 2025农产品买卖合同
- 青铜器科普宣传
- 《大学生创新创业基础教程》第六章创业资源与融资
- 山水林田湖草生态环境调查技术规范DB41-T 1992-2020
- 大众旅游服务质量控制手册
- GB/T 44421-2024矫形器配置服务规范
- 大型活动策划与管理第八章 大型活动风险管理
- Q∕GDW 12165-2021 高海拔地区运维检修装备配置规范
- JGJ107-2016钢筋机械连接技术规程
- 妇科医生进修汇报课件
- 动态分析与设计实验报告总结
- 2024年江苏省泰州市海陵区中考一模数学试卷
评论
0/150
提交评论