




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1(3分)|6|()A6B6CD2(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A5B5.2C6D6.43(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是BAC,若tanBAC,则此斜坡的水平距离AC为()A75mB50mC30mD12m4(3分)下列运算正确的是()A321B3()2Cx3x5x15Da5(3分)平面内,O的半径为1,点P到O的距离为2,过点P可作O的切线条数为()A0条B1条C2条D无数条6(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()ABCD7(3分)如图,ABCD中,AB2,AD4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()AEHHGB四边形EFGH是平行四边形CACBDDABO的面积是EFO的面积的2倍8(3分)若点A(1,y1),B(2,y2),C(3,y3)在反比例函数y的图象上,则y1,y2,y3的大小关系是()Ay3y2y1By2y1y3Cy1y3y2Dy1y2y39(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE3,AF5,则AC的长为()A4B4C10D810(3分)关于x的一元二次方程x2(k1)xk+20有两个实数根x1,x2,若(x1x2+2)(x1x22)+2x1x23,则k的值()A0或2B2或2C2D2二、填空题(共6小题,每小题3分,满分18分)11(3分)如图,点A,B,C在直线l上,PBl,PA6cm,PB5cm,PC7cm,则点P到直线l的距离是 cm12(3分)代数式有意义时,x应满足的条件是 13(3分)分解因式:x2y+2xy+y 14(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转(090),使得三角板ADE的一边所在的直线与BC垂直,则的度数为 15(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为 (结果保留)16(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),DAM45,点F在射线AM上,且AFBE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:ECF45;AEG的周长为(1+)a;BE2+DG2EG2;EAF的面积的最大值a2其中正确的结论是 (填写所有正确结论的序号)三、解答题(共9小题,满分102分)17(9分)解方程组:18(9分)如图,D是AB上一点,DF交AC于点E,DEFE,FCAB,求证:ADECFE19(10分)已知P(ab)(1)化简P;(2)若点(a,b)在一次函数yx的图象上,求P的值20(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图频数分布表组别时间/小时频数/人数A组0t12B组1t2mC组2t310D组3t412E组4t57F组t54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生21(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率22(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(1,2),ABx轴于点E,正比例函数ymx的图象与反比例函数y的图象相交于A,P两点(1)求m,n的值与点A的坐标;(2)求证:CPDAEO;(3)求sinCDB的值23(12分)如图,O的直径AB10,弦AC8,连接BC(1)尺规作图:作弦CD,使CDBC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长24(14分)如图,等边ABC中,AB6,点D在BC上,BD4,点E为边AC上一动点(不与点C重合),CDE关于DE的轴对称图形为FDE(1)当点F在AC上时,求证:DFAB;(2)设ACD的面积为S1,ABF的面积为S2,记SS1S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时求AE的长25(14分)已知抛物线G:ymx22mx3有最低点(1)求二次函数ymx22mx3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围2019年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1【分析】根据负数的绝对值等于它的相反数解答【点评】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是02【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个【点评】本题主要考查众数的定义,是需要熟练掌握的概念3【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决【点评】本题考查解直角三角形的应用坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答4【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键5【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键6【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键7【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答8【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键9【分析】连接AE,由线段垂直平分线的性质得出OAOC,AECE,证明AOFCOE得出AFCE5,得出AECE5,BCBE+CE8,由勾股定理求出AB4,再由勾股定理求出AC即可【点评】本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键10【分析】由根与系数的关系可得出x1+x2k1,x1x2k+2,结合(x1x2+2)(x1x22)+2x1x23可求出k的值,根据方程的系数结合根的判别式0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解【点评】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1x2+2)(x1x22)+2x1x23,求出k的值是解题的关键二、填空题(共6小题,每小题3分,满分18分)11【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案【点评】本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度12【分析】直接利用分式、二次根式的定义求出x的取值范围【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数13【分析】首先提取公因式y,再利用完全平方进行二次分解即可【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止14【分析】分情况讨论:DEBC;ADBC【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键15【分析】根据圆锥侧面展开扇形的弧长底面圆的周长即可解决问题【点评】本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型16【分析】正确如图1中,在BC上截取BHBE,连接EH证明FAEEHC(SAS),即可解决问题错误如图2中,延长AD到H,使得DHBE,则CBECDH(SAS),再证明GCEGCH(SAS),即可解决问题正确设BEx,则AEax,AFx,构建二次函数,利用二次函数的性质解决最值问题【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题三、解答题(共9小题,满分102分)17【分析】运用加减消元解答即可【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法18【分析】利用AAS证明:ADECFE【点评】本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS19【分析】(1)P;(2)将点(a,b)代入yx得到ab,再将ab代入化简后的P,即可求解;【点评】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键20【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握21【分析】(1)2020年全省5G基站的数量目前广东5G基站的数量4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键22【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出ACBD,ABCD,利用平行线的性质可得出DCPOAE,结合ABx轴可得出AEOCPD90,进而即可证出CPDAEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出CDPAOE,再利用正弦的定义即可求出sinCDB的值【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出DCPOAE,AEOCPD90;(3)利用相似三角形的性质,找出CDPAOE23【分析】(1)以C为圆心,CB为半径画弧,交O于D,线段CD即为所求(2)连接BD,OC交于点E,设OEx,构建方程求出x即可解决问题【点评】本题考查作图复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题24【分析】(1)由折叠的性质和等边三角形的性质可得DFCA,可证DFAB;(2)过点D作DMAB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由ACD的面积为S1的值是定值,则当点F在DM上时,SABF最小时,S最大;(3)过点D作DGEF于点G,过点E作EHCD于点H,由勾股定理可求BG的长,通过证明BGDBHE,可求EC的长,即可求AE的长【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键25【分析】(1)抛物线有最低点即开口向上,m0,用配方法或公式法求得对称轴和函数最小值(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,m3),即xm+1,ym3,x+y2即消去m,得到y与x的函数关系式再由m0,即求得x的取值范围(3)法一:求出抛物线恒过点B(2,4),函数H图象恒过点A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政办公文件撰写指南
- 2025年人民政府投资合作协议范本
- 建筑垃圾资源化项目验收标准方案
- 共享储能项目接入电网技术方案
- 幕墙数字化供应链协同方案
- 小学低年级数学创新思维启蒙的策略
- 电厂报价员考试题及答案
- 保育员护理试题及答案
- 岗位安全培训实施成效课件
- 2025年抗原检测考核题目及答案
- PMBOK指南第6版中文版
- 第五章-针织服装设计与样板制作经典版课件
- 肿瘤的介入治疗课件最新版
- 基坑土石方开挖安全专项施工方案
- 中小学心理健康教育指导纲要考试试题及答案
- 社会统计学-全套课件
- 物流公司道路运输许可证申请资料范文
- 六年级上册英语试题Unit1 I go to school at 8:00. 阶段训练一-人教精通版-(无答案 )
- (完整版)湘教版地理必修一知识点总结
- [中天]香港置地北郡商业施工策划(共172页)
- 销售人员技能或能力分级定义表一
评论
0/150
提交评论