




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13 4最短路径问题 第二课时 1 在平面内 一个图形沿一定方向 移动一定的距离 这样的图形变换称为平移变换 简称平移 平移不改变图形的形状和大小 2 三角形三边的数量关系 三角形两边的差小于第三边 上节课我们认识了精通数学 物理学的学者海伦 解决了数学史中的经典问题 将军饮马问题 但善于观察与思考的海伦在解决 两点 直线同侧 一线 的最短路径问题时他从另一角度发现了 最大值 的情况 今天我们一起来探究下 探究一 运用轴对称解决距离之差最大问题 活动1 回顾旧知 引入新知 探究一 运用轴对称解决距离之差最大问题 活动2 整合旧知 探究新知 例1 如图 a b两点在直线l的异侧 在直线l上求作一点c 使 ac bc 的值最大 怎么作图呢 思路点拨 根据轴对称的性质 利用三角形三边的关系 通过比较来说明最值问题是常用的一种方法 此题的突破点是作点a 或点b 关于直线l的对称点a 或b 利用三角形任意两边之差小于第三边 再作直线a b ab 与直线l交于点c 解 如图1所示 以直线l为对称轴 作点a关于直线l的对称点a a b的延长线交l于点c 则点c即为所求 探究一 运用轴对称解决距离之差最大问题 回忆我们是怎么利用轴对称的知识证明 两点 直线同侧 一线型 时ac bc最小的吗 试类比证明 ac bc 最大 的作法是否正确性 探究一 运用轴对称解决距离之差最大问题 活动3 类比建模 证明新知 理由 在直线l上任找一点c 异于点c 连接ca c a c a c b 因为点a a 关于直线l对称 所以l为线段aa 的垂直平分线 则有ca ca 所以ca cb ca cb a b 又因为点c 在l上 所以c a c a 又在 a bc 中 c a c b c a c b a b 所以c a c b ca cb 练习点a b均在由面积为1的相同小矩形组成的网格的格点上 建立平面直角坐标系 如图所示 若p是x轴上使得 pa pb 的值最大的点 q是y轴上使得qa qb的值最小的点 请在图中画出点p与点q 思路点拨 当点p与a b共线时 即在线段ab的延长线上 点p为直线ab与x轴的交点 则此时p是x轴上使得 pa pb 的值最大的点 即 pa pb ab 将点a b看成y轴同侧有两点 在y轴上求一点q 使得qa qb最小 探究一 运用轴对称解决距离之差最大问题 如图 点p与点q即为所求 解 延长线段ab ab与x轴交于点p 则此时p是x轴上使得 pa pb 的值最大的点 即 pa pb ab 作点a关于x轴的对称点a a b的连线交y轴于点q 则点q是y轴上使得qa qb的值最小的点 探究一 运用轴对称解决距离之差最大问题 常说 遇山开路 遇水搭桥 生活中的建桥问题与我们所学习的轴对称有什么关系呢 如图 在笔直河岸cd上的点a处需建一座桥 连接河岸ef 且cd ef 显然当桥ab垂直于河岸时 所建的桥长最短 探究二 利用平移解决造桥选址问题 活动1 结合实际 难点分解 重点 难点知识 例2 如图 a b两地位于一条河的两岸 现需要在河上建一座桥mn 桥造在何处才能使从a到b的路径amnb最短 假设河的两岸是平行的直线 桥要与河岸垂直 探究二 利用平移解决造桥选址问题 活动2 生活中的实际问题 重点 难点知识 思路点拨 需将实际问题抽象成数学问题 从点a到点b要走的路线是a m n b 如图所示 而mn是定值 于是要使路程最短 只要am bn最短即可 如图1 此时两线段am bn应在同一平行方向上 平移mn到aa 则aa mn am nb a n nb 这样问题就转化为 当点n在直线b的什么位置时 a n nb最小 图1 探究二 利用平移解决造桥选址问题 重点 难点知识 如图2 连接a b两点的线中 线段a b最短 因此 线段a b与直线b的交点n的位置即为所求 即在点n处造桥mn 所得路径a m n b是最短的 图2 作法 如图2 平移mn到aa 或者过点a作aa 垂直于河岸 且使aa 等于河宽 连接ba 与河岸的一边b交于点n 过点n作河岸的垂线交另一条河岸a于点m 如图所示 则mn为所建的桥的位置 探究二 利用平移解决造桥选址问题 重点 难点知识 上述作图为什么是最短的 请你想想 探究二 利用平移解决造桥选址问题 活动3 几何证明 重点 难点知识 证明 由平移的性质 得mn aa 且mn aa am a n am a n 所以a b两地的距离 am mn bn aa a n bn aa a b 如图2 不妨在直线b上另外任意取一点n 若桥的位置建在n m 处 过点n 作n m a 垂足为m 连接am a n n b 由平行知 am a n aa n m 则建桥后ab两地的距离为 am m n n b a n aa n b aa a n n b 在 a n b中 a n n b a b aa a n n b aa a b 即am m n n b am mn bn 所以桥建在mn处 ab两地的路程最短 图2 练习如图1 江岸两侧有a b两个城市 为方便人们从a城经过一条大江到b城的出行 今欲在江上建一座与两岸垂直的大桥 且笔直的江岸互相平行 应如何选择建桥的位置 才能使从a地到b地的路程最短 解 1 如图2 过点a作ac垂直于河岸 且使ac等于河宽 2 连接bc与河岸的一边交于点n 3 过点n作河岸的垂线交另一条河岸于点m 如图2所示 则mn为所建的桥的位置 探究二 利用平移解决造桥选址问题 重点 难点知识 知识梳理 本堂课主要知识为两个最值问题 1 利用轴对称知识解决 线段距离之差最大 问题 2 利用平移 两点间线段最短解决 造桥选址 问题 重难点归纳 解决线段最值问题时 我们通常利用轴对称 平移等变换把不在一条直线上的两条线段转化到一条直线上 从而作出最短路径的方法来解决问题 1 距离之差最大 问题的两种模型 如果两点在一条直线的同侧时 过两点的直线与原直线的交点处构成线段的差最大 如果两点在一条直线的异侧时 先作其中一点关于直线的对称点 转化为 即可 通常求最大值或最小值的情况 常取其中一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管道安装施工方案范本(3篇)
- 安徽省芜湖市弋江区2023-2024学年高二上学期期末考试思想政治考题及答案
- 心血管内科题目及答案
- 小学语文必考题目及答案
- 商业楼宇空调维修服务合同
- 过元宵节的作文35013篇范文
- 黎明前的曙光读后感作文(10篇)
- 生物学《遗传学基础与进化论》教学大纲
- 办公区域无线网络建设及维护合同
- 早期教育招生课件
- 创新管理 知识产权管理 指南
- 新入职体育教师培训
- 核电站的事故应急预案演练
- 采购合同追加款项
- 《光的相干性》课件
- 2024年河北电工理论考试试题电工技师考试内容(全国通用)
- 教师副高职称答辩题库【3篇】
- 铁路信号工(普速车站与区间信号设备维修)
- 一只窝囊的大老虎第二课时
- 房屋建筑工程监理规划(范本-附带监理细则内容)
- 公司境外佣金业务管理办法
评论
0/150
提交评论