



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?公元前497?)于公元前550年首先发现的。中国最早的一部数学著作周髀算经里有关勾股定理的记载,比毕达哥拉斯要早了五百多年。在稍后一点的九章算术一书中(约在公元50至100年间)勾股定理得到了更加规范的一般性表达。中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图)。赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。1876年4月1日,伽菲尔德在新英格兰教育日志上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。拼出的图被称为“青朱出入图”。刘徽在他的九章算术注中给出了注解,大意是:三角形ABC为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青方并成弦方。依其面积关系有a2+b2=c2由于朱方、青方各有一部分在弦方内,那一部分就不动了。我们还可以拼成多种“青朱出入图”。老师这里还有一种证明方法“达芬奇验证”其验证过程是这样的。 我想,同学们在收集资料和整理交流的过程中可能会有很多感受,咱们来共同分享一下。他说通过同学们的分享和老师的指导,他学到了多种用拼图验证勾股定理的方法。他说通过了解勾股定理的历史,是他进一步了解祖国传统文化的历史悠久和深后的文化底蕴。他说他懂得有时候要做好一件事,只靠自己的力量可能不行,合理分工、齐心协力十分重要。看来同学们的收获很多,通过对这个课题的研究使我们了解用拼图验证勾股定理的方法很多,使我们对一题多证有了更深刻的理解。课题拓展:1、 勾股定理的证明方法有很多课后同学们感兴趣的同学可以上网搜集。2、 你能用七巧板来验证勾股定理吗?最后请同学们欣赏古希腊数学家毕达哥拉斯研究的“毕达哥拉斯树”。它是用现代电脑技术多层次地艺术的再现了勾股定理的内容,使我们大家深刻的感受到了几何之美。关于“毕达哥拉斯树”的制作方法有兴趣的同学课下我们可以共同讨论。教学目标:1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史.2、能力目标:(1)在定理的证明中培养学生的拼图能力;(2)通过问题的解决,提高学生的运算能力3、情感目标:(1)通过自主学习的发展体验获取数学知识的感受;(2)通过有关勾股定理的历史讲解,对学生进行德育教育教学重点:勾股定理及其应用教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育教学用具:直尺,微机教学方法:以学生为主体的讨论探索法教学过程:1、新课背景知识复习(1)三角形的三边关系(2)问题:(投影显示)直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?2、定理的获得让学生用文字语言将上述问题表述出来勾股定理:直角三角形两直角边 的平方和等于斜边 的平方强调说明:(1)勾最短的边、股较长的直角边、弦斜边(2)学生根据上述学习,提出自己的问题(待定)学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论3、定理的证明方法方法一:将四个全等的直角三角形拼成如图1所示的正方形.方法二:将四个全等的直角三角形拼成如图2所示的正方形,方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明4、定理与逆定理的应用例1 已知:如图,在ABC中,ACB ,AB5cm,BC3cm,CDAB于D,求CD的长.解:ABC是直角三角形,AB5,BC3,由勾股定理有 2C又CD的长是2.4cm例2如图,ABC中,ABAC,BAC ,D是B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 20 雾在哪里(教学设计)-2024-2025学年统编版语文二年级上册
- 上学校(教学设计)-2023-2024学年人音版(北京)(2024)一年级上册音乐
- 主题五:博物馆里做义工教学设计-2025-2026学年小学劳动广州版四年级上册-广州版
- 《“爱拼才会赢”》实践课说课稿
- 任务二 美化校园我能行教学设计-2025-2026学年小学劳动鲁科版五年级上册-鲁科版
- (2025春新版)青岛版科学一年级下册全册教案
- 2025-2026学年赣美版2024初中美术七年级上册(全册)教学设计(附目录P193)
- 2025-2026学年西师大版(2024)小学数学一年级上册(全册)教学设计(附目录P227)
- 2.6 《乘法运算律及简便运算》(教学设计)-2024-2025学年四年级下册数学西师大版
- 2025年中考化学试题分类汇编:工艺流程题(第2期)解析版
- 全球热泵产业发展报告2025
- 商业地产项目数字化运营与客户体验提升策略研究报告
- 2025新疆天泽和达水务科技有限公司部分岗位社会招聘28人笔试模拟试题及答案解析
- 基于多元线性回归的国内旅游收入影响分析-以江西省为例
- 水厂化验室知识培训课件
- 实验学校物业管理服务项目方案投标文件(技术方案)
- 2025个人房屋租赁合同范本下载
- U8二次开发参考手册
- DLT5210.1-2021电力建设施工质量验收及评价规程全套验评表格
- 统编本四年级上册语文课堂作业本参考答案
- DBJ50-T-389-2021 高性能混凝土应用技术标准
评论
0/150
提交评论