




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3FourierSeriesRepresentationofPeriodicSignals 3 FourierSeriesRepresentationofPeriodicSignal JeanBaptisteJosephFourier bornin1768 inFrance 1807 periodicsignalcouldberepresentedbysinusoidalseries 1829 Dirichletprovidedpreciseconditions 1960s CooleyandTukeydiscoveredfastFouriertransform 3FourierSeriesRepresentationofPeriodicSignals 3 2TheResponseofLTISystemstoComplexExponentials 1 ContinuoustimeLTIsystem systemfunction 3FourierSeriesRepresentationofPeriodicSignals 2 DiscretetimeLTIsystem systemfunction 3FourierSeriesRepresentationofPeriodicSignals 3 InputasacombinationofComplexExponentials ContinuoustimeLTIsystem DiscretetimeLTIsystem Example3 1 3FourierSeriesRepresentationofPeriodicSignals 3 3FourierSeriesRepresentationofContinuous timePeriodicSignals 1 GeneralForm 3 3 1LinearCombinationsofHarmonicallyRelatedComplexExponentials Thesetofharmonicallyrelatedcomplexexponentials Fundamentalperiod T commonperiod 3FourierSeriesRepresentationofPeriodicSignals So arbitraryperiodicsignalcanberepresentedas Fundamentalcomponents Secondharmoniccomponents Nthharmoniccomponents Fourierseries Example3 2 3FourierSeriesRepresentationofPeriodicSignals 2 RepresentationforRealSignal Realperiodicsignal x t x t Soa k a k Let A 3FourierSeriesRepresentationofPeriodicSignals Let A B 3FourierSeriesRepresentationofPeriodicSignals 3 3 2DeterminationoftheFourierSeriesRepresentationofaContinuous timePeriodicSignal Orthogonalfunctionset Determiningthecoefficientbyorthogonality Multiplytwosidesby 3FourierSeriesRepresentationofPeriodicSignals FourierSeriesRepresentation 3FourierSeriesRepresentationofPeriodicSignals Example3 33 5 3FourierSeriesRepresentationofPeriodicSignals 3 4ConvergenceoftheFourierSeries Approximationerror 1 Finiteseries 3FourierSeriesRepresentationofPeriodicSignals Condition1 AbsolutelyIntegrable 2 Dirichletcondition 3FourierSeriesRepresentationofPeriodicSignals Condition2 Finitenumberofmaximaandminimaduringasingleperiod 3FourierSeriesRepresentationofPeriodicSignals Condition3 Finitenumberofdiscontinuity 3FourierSeriesRepresentationofPeriodicSignals 1898 AlbertMichelson AnAmericanphysicistConstructedaharmonicanalyzerObservedtruncatedFourierseriesxN t lookedverymuchlikex t FoundastrangephenomenonJosiahGibbs AnAmericanmathematicalphysicistGivenoutamathematicalExplanation 3 Gibbsphenomenon 3FourierSeriesRepresentationofPeriodicSignals 3FourierSeriesRepresentationofPeriodicSignals Anycontinuity xN t1 x t1 Vicinityofdiscontinuity ripplespeakamplitudedoesnotseemtodecreaseDiscontinuity overshoot9 Gibbs sconclusion 3FourierSeriesRepresentationofPeriodicSignals 3 6 1LinearCombinationofHarmonicallyRelatedComplexExponentials Periodicsignalx n withperiodN x n x n N 3 6FourierSeriesRepresentationofDiscrete timePeriodicSignals Discrete timecomplexexponentialorthogonalsignalset 3FourierSeriesRepresentationofPeriodicSignals Propertyoforthogonalsignalset 3FourierSeriesRepresentationofPeriodicSignals 3 6 2DeterminationoftheFourierSeriesRepresentationofPeriodicSignals Fourierseriesofperiodicsignalx n Determinethecoefficientsakbyorthogonality 3FourierSeriesRepresentationofPeriodicSignals TheequationsofFourierseries akisperiodic 3FourierSeriesRepresentationofPeriodicSignals Example3 103 12 3FourierSeriesRepresentationofPeriodicSignals 1 Systemfunction 3 8FourierSeriesandLTISystem Continuoustimesystem Discrete timesystem 2 Frequencyresponse Continuoustimesystem Discrete timesystem 3FourierSeriesRepresentationofPeriodicSignals 3 Systemresponse Continuoustimesystem Discrete timesystem Example3 163 17 3FourierSeriesRepresentationofPeriodicSignals 3 9Filtering 3 9 1Frequency shapingfilters Example1 Equalizer 3FourierSeriesRepresentationofPeriodicSignals Example2 ImageFiltering Edgeenhancement 3FourierSeriesRepresentationofPeriodicSignals 3 9 2Frequency selectivefilters Severaltypeoffilter 1 Lowpassfilter 2 Highpassfilter 3 Bandpassfilter 3FourierSeriesRepresenta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年执业药师考试智能备考试题及答案
- 自考行政管理的综合应用技巧试题及答案
- 自考行政管理技巧试题及答案概览
- 社会变迁与中国文化的适应性试题及答案
- 用心备考执业医师考试试题及答案
- 行政法学习成效评估的方法探讨:试题及答案
- 2025年经济法中的法律责任试题及答案
- 2025年经济法模拟考重点试题及答案
- 护理师职业发展的领域与机遇试题及答案
- 健康教育与宣传技巧试题及答案
- 西亚、中亚、北非音乐文化
- 三类人员安全教育
- 2024电能存储系统用锂蓄电池和电池组安全要求
- 2023年招聘业务员考试试题
- DG-TJ08-2462-2024 装配式建筑职业技能标准
- 劳务外包服务投标方案(技术标)
- 《中医体重管理临床指南》
- DB33T 1209-2020 无机轻集料保温板外墙保温系统应用技术规程
- 2025年北京市水务局所属事业单位招聘工作人员101人笔试高频重点提升(共500题)附带答案详解
- 2025届贵州省遵义第四中学高考语文全真模拟密押卷含解析
- 【MOOC】创业基础-暨南大学 中国大学慕课MOOC答案
评论
0/150
提交评论