已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.(本题满分14分)设数列的前项和为,且,(1)证明:数列是等比数列;(2)若数列满足,求数列的通项公式2.(本小题满分12分)等比数列的各项均为正数,且1.求数列的通项公式.2.设 求数列的前项和.3.设数列满足(1) 求数列的通项公式;(2) 令,求数列的前n项和4.已知等差数列an的前3项和为6,前8项和为4()求数列an的通项公式;()设bn=(4an)qn1(q0,nN*),求数列bn的前n项和Sn5.已知数列an满足,nN(1)令bn=an+1an,证明:bn是等比数列;(2)求an的通项公式1.解:(1)证:因为,则,所以当时,整理得 5分由,令,得,解得所以是首项为1,公比为的等比数列 7分(2)解:因为,由,得 9分由累加得,(), 当n=1时也满足,所以 2.解:()设数列an的公比为q,由得所以。有条件可知a0,故。由得,所以。故数列an的通项式为an=。()故所以数列的前n项和为3.解:()由已知,当n1时,。而 所以数列的通项公式为。()由知 从而 -得 。即 4.解:(1)设an的公差为d,由已知得解得a1=3,d=1故an=3+(n1)(1)=4n;(2)由(1)的解答得,bn=nqn1,于是Sn=1q0+2q1+3q2+(n1)qn1+nqn若q1,将上式两边同乘以q,得qSn=1q1+2q2+3q3+(n1)qn+nqn+1将上面两式相减得到(q1)Sn=nqn(1+q+q2+qn1)=nqn于是Sn=若q=1,则Sn=1+2+3+n=所以,Sn=5.解:(1)证b1=a2a1=1,当n2时,所以bn是以1为首项,为公比的等比数列(2)解由(1)知,当n2时,an=a1+(a2a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学生基础医学 干细胞研究进展护理课件
- 2026年高考数学一轮复习:空间向量的应用(讲义)原卷版
- 医学生基础医学 耳鼻咽喉科急危重症护理基础护理课件
- 2026年高考数学一轮复习:复数(讲义)解析版
- 医学肾病综合征血脂管理案例教学课件
- 2026年外研版三年级英语下册Unit 4 What's your hobby(教学设计)
- 2026年高考政治总复习选必三《逻辑与思维》必背术语金句
- 2026年人教版九年级数学上册复习:二次函数中的角度存在性问题的四类综合题型(压轴题专项训练)原卷版+解析
- 2026年高考语文写作预测8篇
- 《JBT 6258-2018 扭矩标准机 通 用技术条件》(2026年)实施指南
- 2023年光器件工艺工程师年终总结及下一年展望
- 中式烹调菜肴培训教材
- 发展汉语初级口语(Ⅰ)第21课PPT
- 3.3《不简单的杠杆》课件
- ISO 22000-2018食品质量管理体系-食品链中各类组织的要求(2023-雷泽佳译)
- 茶艺师(技师)理论考试(重点)题库300题(含答案解析)
- 俄语实用语法智慧树知到答案章节测试2023年哈尔滨师范大学
- GB/T 711-1988优质碳素结构钢热轧厚钢板和宽钢带
- 无菌物品的管理培训课件
- 中小学家长会-九年级第一次家长会课件-1课件
- 《制度经济学》全套课件
评论
0/150
提交评论