初三数学圆知识点复习专题经典.doc_第1页
初三数学圆知识点复习专题经典.doc_第2页
初三数学圆知识点复习专题经典.doc_第3页
初三数学圆知识点复习专题经典.doc_第4页
初三数学圆知识点复习专题经典.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;四、圆与圆的位置关系外离(图1) 无交点 ;外切(图2) 有一个交点 ;相交(图3) 有两个交点 ;内切(图4) 有一个交点 ;内含(图5) 无交点 ; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧练习1、 基本概念1下面四个命题中正确的一个是( )A平分一条直径的弦必垂直于这条直径 B平分一条弧的直线垂直于这条弧所对的弦C弦的垂线必过这条弦所在圆的圆心 D在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2下列命题中,正确的是()A过弦的中点的直线平分弦所对的弧 B过弦的中点的直线必过圆心C弦所对的两条弧的中点连线垂直平分弦,且过圆心 D弦的垂线平分弦所对的弧练习2、垂径定理1、 在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是_cm.2、在直径为52cm的圆柱形油槽内装入一些油后,如果油面宽度是48cm,那么油的最大深度为_cm.3、如图,已知在中,弦,且,垂足为,于,于.(1)求证:四边形是正方形.(2)若,求圆心到弦和的距离.4、已知:ABC内接于O,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求AB的长5、如图,F是以O为圆心,BC为直径的半圆上任意一点,A是的中点,ADBC于D,求证:AD=BF.练习3、度数问题1、 已知:在中,弦,点到的距离等于的一半,求:的度数和圆的半径. 2、已知:O的半径,弦AB、AC的长分别是、.求的度数。练习4、相交问题如图,已知O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,BED=30,求CD的长.ABDCEO练习5、平行问题在直径为50cm的O中,弦AB=40cm,弦CD=48cm,且ABCD,求:AB与CD之间的距离.练习6、同心圆问题如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为.求证:.练习7、平行与相似已知:如图,是的直径,是弦,于.求证:.六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。【练习1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形? 【2】如图,已知O中,AB为直径,AB=10cm,弦AC=6cm,ACB的平分线交O于D,求BC、AD和BD的长【3】如图所示,已知AB为O的直径,AC为弦,ODBC,交AC于D,BC=4cm(1)求证:ACOD; (2)求OD的长; (3)若2sinA1=0,求O的直径【4】四边形ABCD中,ABDC,BC=b,AB=AC=AD=a,如图,求BD的长【5】如图1,AB是半O的直径,过A、B两点作半O的弦,当两弦交点恰好落在半O上C点时,则有ACACBCBC=AB2(1)如图2,若两弦交于点P在半O内,则APACBPBD=AB2是否成立?请说明理由(2)如图3,若两弦AC、BD的延长线交于P点,则AB2=参照(1)填写相应结论,并证明你填写结论的正确性八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边形是内接四边形 练习1、如图7-107,O中,两弦ABCD,M是AB的中点,过M点作弦DE求证:E,M,O,C四点共圆九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 平分利用切线性质计算线段的长度练习1:如图,已知:AB是O的直径,P为延长线上的一点,PC切O于C,CDAB于D,又PC=4,O的半径为3求:OD的长利用切线性质计算角的度数练习2:如图,已知:AB是O的直径,CD切O于C,AECD于E,BC的延长线与AE的延长线交于F,且AF=BF求:A的度数利用切线性质证明角相等练习3:如图,已知:AB为O的直径,过A作弦AC、AD,并延长与过B的切线交于M、N求证:MCN=MDN利用切线性质证线段相等练习4:如图,已知:AB是O直径,COAB,CD切O于D,AD交CO于E求证:CD=CE利用切线性质证两直线垂直练习5:如图,已知:ABC中,AB=AC,以AB为直径作O,交BC于D,DE切O于D,交AC于E求证:DEAC十一、圆幂定理(选学)(1) 相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, (2) 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, (3) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线 (4) 割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在中,、是割线 练习1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。练习2.O中的两条弦AB与CD相交于E,若AE6cm,BE2cm,CD7cm,求:CE的长图2练习3.如图3,P是O外一点,PC切O于点C,PAB是O的割线,交O于A、B两点,如果PA:PB1:4,PC12cm,O的半径为10cm,求圆心O到AB的距离图3练习4.如图4,AB为O的直径,过B点作O的切线BC,OC交O于点E,AE的延长线交BC于点D,(1)求证:;(2)若ABBC2厘米,求CE、CD的长。图4练习5.如图5,PA、PC切O于A、C,PDB为割线。求证:ADBCCDAB图5练习6.如图6,在直角三角形ABC中,A90,以AB边为直径作O,交斜边BC于点D,过D点作O的切线交AC于E。求证:BC2OE。图6 十二、两圆公共弦定理(选学)圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:(1)公切线长:中,;(2)外公切线长:是半径之差; 内公切线长:是半径之和 。十四、圆内正多边形的计算(1)、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。如:正六边形,表示六条边都相等,六个角也相等。(2)、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。(3)、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。(4)、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。(5)、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。(6)、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。7)设正多边形的边长为a,半径为R,,边心距为r,周长为L=na.面积S=1/2 Lr( 常用的辅助线,半径为R,边心距为r,边长a的一半)2、正多边形的对称性 (1)、正多边形的轴对称性正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。(2)、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。(3)、正多边形的画法先用量角器或尺规等分圆,再做正多边形。3正三角形 在中是正三角形,有关计算在中进行:;4正四边形同理,四边形的有关计算在中进行,:5正六边形同理,六边形的有关计算在中进行,.练习一 填空题1 在一个圆中,如果的弧长是,那么这个圆的半径r=_.2 正n边形的中心角的度数是_.3 边长为2的正方形的外接圆的面积等于_.4 正六边形的内切圆半径与外接圆半径的比等于_.练习二 选择题5正多边形的一边所对的中心角与该正多边形一个内角的关系是( ).(A) 两角互余 (B)两角互补 (C)两角互余或互补 (D)不能确定6圆内接正三角形的边心距与半径的比是( ).(A)2:1 (B)1:2 (C) (D)7正六边形的内切圆与外接圆面积之比是( )(A) (B) (C) (D)8在四个命题:(1)各边相等的圆内接多边形是正多边形;(2)各边相等的圆外切多边形是正多边形;(3)各角相等的圆内接多边形是正多边形;(4)各角相等的圆外切多边形是正多边形,其中正确的个数为( )(A)1 (B)2 (C)3 (D)49已知:如图48-1,ABCD为正方形,边长为a,以B为圆心,以BA为半径画弧,则阴影部分面积为( ).(A)(1-)a2 (B)1-(C) (D)a2十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:;(2)扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积2、圆柱: (1)圆柱侧面展开图 =(2)圆柱的体积:3 .圆锥侧面展开图(1)=(2)圆锥的体积:练习一1如图,OAB是以6cm为半径的扇形,作CAO90交弧AB于点A交OB的延长线于点C,如果弧AB的长等于3cm,AC=4cm,则图中阴影部分的面积为( )A.15cm2 B.6 cm2 C. 4 cm2 D. 3 cm22,如图,AB是 0的直径,C、D是AB上的三等分点,如果O的半径为l,P是线段AB上的任意一点,则图中阴影部分的面积为( )A/3 B/6 c/2 D2/33图中实线部分是半径为9m的两条等弧组成的游泳池。若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( ) A12m B18m C20m D24m4如图,AB是O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积是( ) A. B. C. D.5如图,扇子的圆心角为,余下扇形的圆心角为,为了使扇子的外形美观,通常情况下与的比按黄金比例设计,若取黄金比为06,则= 度 5题 6题 7题 8题 9题6如图,ABCD是各边长都大于2的四边形,分别以它的顶点为圆心、1为半径画弧(弧的端点分别在四边形的相邻两边上),则这4条弧长的和是_7如图,墙OA、OB的夹角AOB120,一根9米长的绳子一端栓在墙角O处,另一端栓着一只小狗,则小狗可活动的区域的面积是 米2。(结果保留)。8如图4,将正方形ABCD中的ABP绕点B顺时针旋转能与CBP,重合,若BP=4,则点P所走过的路径长为 9如图,在RtABC中,已知BCA=90,BAC=30, AB=6cm。把ABC以点B为中心逆时针旋转,使点C旋转到AB边的延长线上的点C处,那么AC边扫过的图形(图中阴影部分)的面积是_cm2(不取近似值)。十六,圆内接多边形1, 若一个多边形各顶点都在同一个圆上,那么,这个多边形叫做

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论