




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
16.2二次根式的乘除第二课时一、教学目标1.核心素养:通过对最简二次根式和二次根式除法法则的学习,培养学生逻辑推理和运算能力2.学习目标(1)理解和,并能利用它们进行计算;(2)理解最简二次根式的定义,知道二次根式运算的结果必须是最简二次根式3.学习重点理解和,并能利用它们进行计算和化简.4.学习难点利用和进行计算和化简二、教学设计(一)课前设计1.预习任务任务1 二次根式的除法法则是怎样的?任务2 什么叫最简二次根式?2.预习自测1式子成立的条件是( )A B C D2. 下列根式中不是最简二次根式的是( )A. B. C. D.3. 计算的值为( )A. B. C. D. 预习自测1.B 2. B 3.B(二)课堂设计1.知识回顾(1)二次根式的乘法法则:;(2)积的算数平方根的性质:.2.问题探究问题探究一 二次根式的除法法则是怎样的?活动一 从特殊到一般探究法则计算下列各式:(1) , ;(2) , ;(3) , ;观察上面的计算结果,你的发现的规律是 (文字表达);总结二次根式的除法法则: (用字母表达).活动二 反思法则 巩固提升为什么中要对的取值进行限制?与二次根式的乘法法则进行比较,的取值有什么变化?(因为既要考虑二次根式本身有意义,还得考虑整个式子是否有意义,因此,与二次根式的乘法法则比较,的取值变化是这里的,所以)活动三 逆向思维 类比迁移 如何对二次根式的化简?类比积的算术平方根的性质我们可以得到商的算术平方根的性质论: .结论:商的算术平方根的性质例1 计算:(1); (2)【知识点:二次根式的除法】详解:(1); (2)【点拨】按照二次根式的除法法则运算即可.例2 化简:(1) ; (2) = ;(3) = .(4) = .【知识点:二次根式的除法】详解:(1); (2);(3);(4).【点拨】如果被开方数是带分数,则先将带分数化为假分数,再利用商的算术平方根的性质进行计算,如果被开方数是小数,则可先将小数化为分数,再直接利用商的算术平方根的性质计算即可.问题探究二 什么样的式子是最简二次根式?观察与思考 下列各式中的被开方数有何共同特点?,特点:(1)被开方数不含 ;(2)被开方数不含 ;结论:我们把满足以上两个条件的二次根式叫做最简二次根式.温馨提示:在二次根式的运算中,一般要把二次根式化为最简二次根式.例3 化简(1) ;(2).【知识点:二次根式的除法】详解:(1) ;(2).【点拨】被开方数是带分数的要先化成假分数后,再进行乘除,计算的结果含有分母时,要乘以分母的有理化因式,使其被开方数不含分母和开得尽方的因数或因式,达到最后结果是最简二次根式的目的.3.课堂小结【知识梳理】(1)二次根式的除法法则:(2)最简二次根式的条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.【重难点突破】(1)在运用二次根式除法法则时,注意被开方数的取值范围,即 0, 0,要特别注意,因为当时,分式没有意义;当被开方数是带分数时,应先化成假分数,如必须先化成,避免出现=这样的错误.(2)只有当 0, 0时,才能成立(3)二次根式的运算结果都必须是最简二次根式,把二次根式化成最简二次根式需满足以下两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式(4)当二次根式的被开方数是不能再约分的分数(包括小数)或分式时,化简方法一,利用商的算术平方根的性质化简:“化”,将根号下的数化成分数形式,如果是带分数,则将其化为假分数的形式;“写”,利用商的算术平方根的性质将写成的形式;“乘”,分子、分母都同时乘以一个适当的数,化去分母中的根号;“约”,即约去分子、分母中的公因式,如:.方法二,先直接去分母再化简:将根号下的数化成分数形式,如果是带分数,则将其化为假分数的形式;将分子、分母都同时乘以一个适当的数或式,使分母变成一个数的平方数;将分母进行开方,直接作为化简后的分母,再对分子利用积的算术平方根的性质进行化简.如:.4.随堂检测1. 设一个长方形的面积为,一边长为,则另一边长为( )A B C D 【知识点:二次根式的除法】【答案】B【思路点拨】长方形的面积除以其中一边长就等于另一边长.2.下列二次根式中,是最简二次根式的是 ( )AB C D 【知识点:最简二次根式】【答案】C【思路点拨】3. 等式成立的条件是 ( )A. B. C. D. 且【知识点:二次根式的除法】【答案】C【思路点拨】由题意可得,所以.4. 化简:= _.【知识点:二次根式除法】【答案】【思路点拨】中,被开方数的分子、分母同时乘以就可实现分母有理化.二次根式的除法法则预习导学学习目标1 经历探究二次根式除法法则的过程,能熟练地进行二次根式除法运算2 知道最简二次根式的概念,能将二次根式进行化简3 能运用二次根式乘、除法则解决实际问题.l 重点:二次根式的除法法则l 难点:容易忽略二次根式化简过程中变量的取值范围.预习导学问题导入 之前,我们学习过整式、分式的乘除运算,上一课,我们又学习了二次根式的乘法运算,这节课,我们来看看二次根式的除法运算.你想不想知道二次根式的除法与整式、分式的除法有什么相同点和不同点呢?知识点一 二次根式的除法法则阅读课本本课时“例6”之前的内容,回答下列问题1比较大小: ; ; 2猜想:与(a0,b0)相等吗?与相等吗?归纳总结二次根式的除法法则:= (a0,b0).3.讨论:在“例5”中,化简二次根式,将化为什么形式?为什么?知识点二 最简二次根式阅读课本本课时“例6”至“练习”之间的内容,思考下列问题1 讨论:(1)在“例4、5、6”中的二次根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025第十三届贵州人才博览会贵阳幼儿师范高等专科学校引进高层次及急需紧缺人才模拟试卷完整参考答案详解
- 2025年永安事业单位真题
- 2025江苏淮安市金湖县事业单位招聘96人模拟试卷参考答案详解
- 2025黑龙江哈尔滨宾县公安局招聘警务辅助人员32人考前自测高频考点模拟试题有完整答案详解
- 签订劳动合同6篇
- 2025安徽蚌埠市教育局局属中学高层次人才招聘50人模拟试卷带答案详解
- 2025年福建省福州市长乐区行政服务中心管理委员会招聘2人考前自测高频考点模拟试题及答案详解(有一套)
- 2025年陆丰市市级机关公开遴选考试真题
- 2025江苏常州市钟楼区卫生健康系统定向招聘农村订单定向医学毕业生1人考前自测高频考点模拟试题及完整答案详解1套
- 2025年江苏常州经济开发区社会保障和卫生健康局下属事业单位公开招聘卫技人员14人模拟试卷及完整答案详解1套
- 2026中国海洋石油集团有限公司秋季校园招聘备考考试题库附答案解析
- 人教版九年级物理上-各单元综合测试卷含答案共五套
- 心脏病患者非心脏手术麻醉管理
- 网络安全产品汇总介绍
- 高中日语学习宣讲+课件
- 公路交通安全设施工高级工培训内容
- GB/T 3141-1994工业液体润滑剂ISO粘度分类
- 癌症病人三阶梯止痛治疗原则标准课件
- 颅脑损伤患者护理查房课件
- 少先队大队委候选人推荐表
- 重要环境污染物及环境疾病课件
评论
0/150
提交评论