




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三讲 反比例函数与面积 知识点 如图 是双曲线 上任意一点 过点 作 轴于点 连接 则 其 他图示均为 阴影 图 变式 如图 阴影 图 变式 如图 阴影 图 欢迎加入实验校满分 群 群 订购联系 郭老师 如图 是双曲线 上任意一点 过点 作 轴于点 轴于点 则 矩形 其他图示均为 阴影 图 变式 如图 阴影 图 如图 过原点 作直线交双曲线 于点 分别过点 作 轴 轴的平行线 交于点 则 其他图示均为 阴影 图 如图 已知 是双曲线 同一支上的两点 分别过点 作 轴 或 轴 于点 轴 或 轴 于点 连接 则 四边形 图 实验校满分能力提升九下数学 主 编 徐 鸣 徐采钰 如图 已知 是双曲线 第一象限上的两点 连接 过点 作 轴于点 交 于点 过点 作 轴于点 则 与 四边形 的大小关系是 第 题图 第 题图 第 题图 如图 是反比例函数 槡 的图象上任意一点 轴于点 是 轴上的动点 则 的面积为 如图 已知 为反比例函数 的图象上一点 过点 作 轴于点 槡 则 的值为 如图 一直线经过原点 且与反比例函数 相交于点 过点 作 轴于点 连接 则 第 题图 第 题图 第 题图 如图 以平行四边形 的顶点 为原点 边 所在直线为 轴 建立平面直角坐标系 顶点 的坐标分别是 过点 的反比例函数 的图象交 于点 连接 则四边形 的面积是 如图 已知 两点在双曲线 槡 上 分别经过 两点向坐标轴作垂线段 且 阴影 则 如图 是反比例函数 在第一象限内的两点 且 两点的横坐标分别是 槡 和 槡 则 的面积是 欢迎加入实验校满分 群 群 订购联系 郭老师 如图 点 在反比例函数 的图象上 点 在反比例函数 的图象上 轴 已知点 的横坐标分别为 与 的面积之和为 则 第 题图 第 题图 第 题图 如图 是反比例函数 槡 在第二象限内的一点 点 是反比例函数 槡 在第一象限内的 一点 直线 与 轴交于 且 是 的中点 连接 则 如图 已知点 在 轴负半轴上 双曲线 经过直角三角形 斜边 的中点 且与 直角边 相交于点 若点 的坐标为 则 的面积为 第 题图 第 题图 第 题图 如图 是双曲线 上的一点 过点 作 轴的垂线交直线 于点 连接 当点 在这条双曲线上运动 且点 在点 的上方时 面积的最大值是 如图 在平面直角坐标系中 过点 分别作 轴于点 轴于点 分别 与反比例函数 的图象交于 两点 则四边形 的面积为 如图 在平面直角坐标系中 点 在第一象限内 轴于点 反比例函数 的图象 与线段 相交于点 且 若 的面积为 则 第 题图 第 题图 第 题图 如图 矩形 的顶点 分别在 轴 轴的正半轴上 反比例函数 的图象经过 的中点 与 交于点 连接 则 实验校满分能力提升九下数学 主 编 徐 鸣 徐采钰 如图 在平面直角坐标系中 菱形 的顶点 在反比例函数 的图象上 横 坐标分别为 对角线 轴 若菱形 的面积为 则 的值为 如图 两个反比例函数 和 其中 在第一象限内的图象是 在第二 四象限 内的图象是 点 在 上 轴于点 交 于点 轴于点 交 于点 相交于点 则四边形 的面积为 第 题图 第 题图 第 题图 如图 反比例函数 的图象经过矩形 对角线的交点 分别与 相交于点 四边形 则 如图 直线 分别与双曲线 双曲线 交于点 和点 且 将直线 向左平移 个单位长度后 与双曲线 交于点 若 则 的值为 的值为 如图 点 在反比例函数 的图象上 过点 的直线与 轴 轴分别交于点 且 的面积为 则 的值为 第 题图 第 题图 第 题图 如图 矩形 的边 与 轴交于点 与反比例函数 在第一象限的图象交于点 点 的纵坐标为 的面积是 槡 则 如图 在矩形 中 对角线 在 轴上 点 点 经过点 的双曲线 与 的延长线交于点 直线 与 轴交于点 则 的面积为 如图 反比例函数 的图象经过 对角线的交点 已知点 在坐标轴上 则 的面积是 欢迎加入实验校满分 群 群 订购联系 郭老师 如图 是双曲线 上的两点 点 的横坐标是点 的横坐标的 倍 线段 的延 长线交 轴于点 槡 则 第 题图 第 题图 第 题图 如图 直线 分别与第一象限内的双曲线 交于 两点 则 如图 双曲线 上三点的横坐标从左往右依次为 阴影部分的面积为 则 的值 为 第 题图 第 题图 第 题图 如图 双曲线 经过四边形 的顶点 平分 与 轴正半轴 的夹角 轴 将 沿 翻折后得到 点落在 上 则四边形 的面积是 如图 矩形 的顶点 在 轴上 且关于 轴对称 反比例函数 的图象经过点 反比例函数 的图象分别与 交于点 若 则 如图 在平面直角坐标系中 正方形 的顶点 的坐标为 点 在 轴正半轴上 点 在第三象限的双曲线 上 过点 作 轴交双曲线于点 连接 求 的面积 实验校满分能力提升九下数学 主 编 徐 鸣 徐采钰 如图 一次函数 的图象与反比例函数 的图象交于点 与点 求反比例函数的表达式 若 是第一象限内双曲线上的一动点 不与点 重合 连接 且过点 作 轴的平行线交 直线 于点 连接 若 的面积为 求出点 的坐标 如图 在平面直角坐标系中 是双曲线 上不同的两点 作直线 交 轴于 点 交 轴于点 过点 作 轴于点 过点 作 轴于点 连接 求证 欢迎加入实验校满分 群 群 订购联系 郭老师 直线 为常数 与双曲线 为常数 相交于 两点 如图 若点 的横坐标为 点 的纵坐标为 直接写出 在第一象限内是双曲线上的点 当 时 求点 的坐标 如图 将直线 向右平移得到直线 交双曲线 于点 和点 写出不等式 的解集 已知 矩形 的顶点 都在双曲线 的图象上 轴 若矩形 是正方形 试直接写出点 的坐标 如图 点 在第三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生消防安全培训教案课件
- 重庆管理基础知识
- 铸造厂考试试题及答案
- 中级银行从业试题及答案
- 福安国企考试真题及答案
- 2025年成套认知测试题及答案
- 2025年环保型货物海运进口代理及绿色认证合同
- 公司股东股权协议书5篇
- 慢性病防御课件
- 实施指南(2025)《GB-T2828.4-2008计数抽样检验程序第4部分:声称质量水平的评定程序》
- 出资比例的协议合同
- GB/T 10345-2022白酒分析方法
- GB/T 19418-2003钢的弧焊接头缺陷质量分级指南
- 四川省参保单位职工社会保险费欠费补缴申报表
- GA 622-2013消防特勤队(站)装备配备标准
- 《C++语言基础》全套课件(完整版)
- 240农业政策学-张广胜课件
- 垄断经典案例课件
- HSK标准教程5下-课件-L2
- 《你看起来很好吃》剧本
- 毕业设计论文-计算机类
评论
0/150
提交评论