



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3 实数教学目标:1知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;2. 学会比较两个实数的大小;3. 了解在有理数范围内的运算及运算法则、运算性质等在实数范围内仍然成立,能熟练地进行实数运算;在实数运算时,根据问题的要求取其近似值,转化为有理数进行计算。 重点:实数与数轴上的点一一对应关系。难点:对“实数与数轴上的点一一对应关系”的理解。教学过程一、试一试我们知道有理数都可以用数轴上的点来表示,但是数轴上的点是否都表示有理数?无理数可以用数轴上的点来表示吗?课件演示课本第175页探究题;学生动手操作,利用课前准备好的硬纸板的圆片在自己画好的数轴上实践体会。你能在数轴上画出坐标是2的点吗?画一画,说说你的方法。教师启发学生得出结论:每一个无理数都可以用数轴上的一个点表示出来。(归纳 :任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数(给出无理数的概念)活动2我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示 、 的点吗?我们设想直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O的坐标是多少?以单位长度1为边长画一个正方形,以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示正数 ,与负半轴的交点就表示负数 总结 :事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,当数从有理数扩充到实数后,实数与数轴上的点就是一一对应关系,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。)练习:学生自己完成课本第178页练习第1题。在此基础上,教师引导学生进一步得出结论:在数从有理数扩充到实数后,实数与数轴上的点是一一对应的。即:每一个实数都可以用数轴上的点来表示;数轴上的每一个点都表示一个实数。类比在有理数范围内相反数、绝对值的几何意义,结合数轴,在实数范围内理解相反数、绝对值的几何意义。深入探讨:平面直角坐标系中的点与有序实数对之间也存在着一一对应关系吗?二、比一比问:利用数轴,我们怎样比较两个有理数的大小?在数轴上表示的数,右边的数总比左边的大。这个结论在实数范围内也成立。我们还有什么方法可以比较两个实数的大小吗?两个正实数的绝对值较大的值也较大;两个负实数的绝对值大的值反而小;正数大于零,负数小于零,正数大于负数。例1比较下列各组数里两个数的大小:(1),14;(2),;(3)2,分析:像例1(1),即可以将,14的大小比较转化为,的大小比较;也可以先求出的近似值,再通过比较它们近似值(取近似值时,注意精确度要相同)的大小,从而比较它们的大小三、算一算问:在数从有理数扩充到实数后,我们已经学过哪些运算?答:加、减、乘、除、乘方和开方运算。接着问:有哪些规定吗?除法运算中除数不为0,而且只有正数及0可以进行开平方运算,任何一个实数都可以进行开立方运算。问:有理数满足哪些运算律?加法交换律:a+bb+a加法结合律:(a+b)+ca+(b+c)乘法交换律:abba乘法结合律:(ab)ca(bc)分配律:a(b+c)ab+ac我们如何知道运算律在实数范围内是否适用?例2计算下列各式的值:(1);(2)例3计算:(1)(精确到001)(2)(保留三个有效数字)(3)(保留三个有效数字)(在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算。)四、课堂巩固(练习:学生自己完成课本第178页练习第1题。在此基础上,教师引导学生进一步得出结论:在数从有理数扩充到实数后,实数与数轴上的点是一一对应的。即:每一个实数都可以用数轴上的点来表示;数轴上的每一个点都表示一个实数。类比在有理数范围内相反数、绝对值的几何意义,结合数轴,在实数范围内理解相反数、绝对值的几何意义。深入探讨:平面直角坐标系中的点与有序实数对之间也存在着一一对应关系吗?)课本第178页练习第2、3题。布置作业必做题:课本第179页习题103的第4、5、6、8题。选做题:课本第179页习题103的第9题。备选题:(1)若m表示一个实数,则m表示一个()A负数B正数C实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025医学心脏瓣膜病处理考试题目及答案
- 查新报告规范流程与模板设计研究
- 2025至2030操作员接口外壳行业市场深度研究及发展前景投资可行性分析报告
- 2025至2030戊唑醇行业市场深度研究及发展前景投资可行性分析报告
- 2025成年人化学化学反应动力学考试题目及答案
- 心得体会范文公司的力量观后感作文
- 二年级下册道德与法治教学设计-16 奖励一下自己 第二课时 人教部编版
- 《圆柱与圆锥》第三单元(教学设计)-2024-2025学年六年级下册数学人教版
- 第3课《雨的四季》 说课稿 2024-2025学年统编版语文七年级上册
- 2025版体育场地租赁及赛事门票销售合作合同
- 一科一品一特色护理妇产科
- 《老年照护芳香疗法应用规范》标准文本及编制说明
- 2024-年全国医学博士外语统一入学考试英语试题
- 冶金渣公司安全生产委员会工作职责
- 老年患者护理心理护理
- 项目担保合作协议范本
- 2024-2025学年湖南省“炎德·英才·名校联考联合体”高二第一次联考(暨入学检测)数学试题(含答案)
- 夹娃娃机合同模板
- 维修人员技能提升与企业绩效关联研究
- 2024-2030年中国儿童室内游乐园行业市场发展现状及发展趋势与投资前景研究报告
- GB 44263-2024电动汽车传导充电系统安全要求
评论
0/150
提交评论