




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数与几何动点综合题24(本小题满分7分)已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线经过点A和点C,动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍.(1)求此抛物线的解析式和直线的解析式;(2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,PQA是直角三角形;(3)直线CA上方的抛物线上是否存在一点D,使得ACD的面积最大,若存在,求出点D坐标;若不存在,说明理由拓展(选自全国中考)1.抛物线经过三点(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标2.已知矩形OABC在直角坐标系中的位置如图,A、C两点的坐标分别为A(6,0)B(0,3),直线y=x与BC边相交于点D(1)求D点坐标(2)若抛物线y=ax2+bx经过D、A两点,试确定此抛物线的表达式(3)P为(2)中抛物线上一点,且点P在x轴上方,求POA面积的最大值。(4)设(2)中的抛物线的对称轴与直线OD将于点M,点Q为对称轴上一动点,以Q、O、M为的三角形与OCD相似,求符合条件的Q的坐标。yACBOxDBAOyx4、如图,在直角坐标系中,点A的坐标为(2,0),连结OA,将线段OA绕原点O顺时针旋转120,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由(线段最值问题).(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么PAB是否有最大面积?若有,求出此时P点的坐标及PAB的最大面积;若没有,请说明理由.5、已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值: (3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由与三角形、四边形有关的综合题怀柔一模25如图,在平面直角坐标系xoy中,抛物线与正半轴交于点A,与轴交于点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC现有两动点P、Q分别从O、C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DEOA,交CA于点E,射线QE交x轴于点F设动点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当0t时,PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t 时,PQF为等腰三角形?ACBOxy海淀一模24. 点为抛物线(为常数,)上任一点,将抛物线绕顶点逆时针旋转后得到的新图象与轴交于、两点(点在点的上方),点为点旋转后的对应点.(1)当,点横坐标为4时,求点的坐标;(2)设点,用含、的代数式表示;(3) 如图,点在第一象限内, 点在轴的正半轴上,点为的中点, 平分,当时,求的值.拓展(选自全国中考)1、已知:在RtOAB中,OAB90,BOA30,AB2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将RtOAB沿OB折叠后,点A落在第一象限内的点C处(1)求点C的坐标;(2)若抛物线yax2bx(a0)经过C、A两点,求此抛物线的解析式;(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由2、如图,对称轴为直线x的抛物线经过点A(6,0)和B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形求OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;当OEAF的面积为24时,请判断OEAF是否为菱形?是否存在点E,使OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由xyOEFx24如图,在平面直角坐标系中,是坐标原点,点A、B的坐标分别为和,连结(1)现将绕点按逆时针方向旋转90,得到,(点A落到点C处),请画出,并求经过、三点的抛物线对应的函数关系式; (2)将(1)中抛物线向右平移两个单位,点的对应点为点,平移后的抛物线与原抛物线相交于点为平移后的抛物线对称轴上一个动点,连结,当取得最大值时,求点P的坐标;(3)在(2)的条件下,当点在抛物线对称轴上运动时,是否存在点使为直角三角形?如果存在,请求出点的坐标;如果不存在,请说明理由25 在平面直角坐标系中,将直线l:沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线:沿x轴平移,得到一条新抛物线与y轴交于点D,与直线AB交于点E、点F(1)求直线AB的解析式; (2)若线段DFx轴,求抛物线的解析式;(3)在(2)的条件下,若点F在y轴右侧,过F作FHx轴于点G,与直线l交于点H,一条直线m(m不过AFH的顶点)与AF交于点M,与FH交于点N,如果直线m既平分AFH的面积又平分AFH的周长,求直线m的解析式25如图,在平面直角坐标系中,点关于轴的对称点为,与轴交于点,将沿翻折后,点落在点处(1)求点、的坐标; (2)求经过、三点的抛物线的解析式;(3)若抛物线的对称轴与交于点,点为 线段上一点,过点作轴的平行线,交抛物线于点 . 当四边形为等腰梯形时,求出点的坐标; 当四边形为平行四边形时,直接写出点的坐标.3、如图,已知抛物线yax24axt(a0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(1,0)(1)求抛物线的对称轴及点A的坐标;(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形吗?并证明你的结论;(3)连结CA与抛物线的对称轴交于点D,当APDACP时,求抛物线的解析式二次函数与相似1、如图,抛物线经过三点(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标OxyABC41(第26题图)BAO1111xy(图8)2、(本题满分12分,共3小题,每小题满分各4分)如图8,已知点A (-2,4) 和点B (1,0)都在抛物线上(1)求、n;(2)向右平移上述抛物线,记平移后点A的对应点为A,点B的对应点为B,若四边形A ABB为菱形,求平移后抛物线的表达式;(3) 记平移后抛物线的对称轴与直线AB 的交点为点C,试在轴上找点D,使得以点B、C、D为顶点的三角形与相似3、如图,抛物线交x轴于A、B两点(A点在B点左侧),交y轴于点C。已知B(8,0),ABC的面积为8.(1) 求抛物线的解析式;(2) 若动直线EF(EF/x轴)从点C开始,以每秒1个长度单位的速度沿y轴负方向平移,且交y轴、线段BC于E、F两点,动点P同时从点B出发,在线段OB上以每秒2个单位的速度向原点O运动。联结FP,设运动时间t秒。当t为何值时,的值最小,求出最大值;(3) 在满足(2)的条件下,是否存在t的值,使以P、B、F为顶点的三角形与ABC相似。若存在,试求出t的值;若不存在,请说明理由。xy04、(本题满分12分)如图,在平面直角坐标系中,抛物线经过点,(1)求抛物线的表达式及其顶点坐标;(2)过点A作轴的平行线交抛物线于另一点C,求ABC的面积;在轴上取一点P,使ABP与ABC相似,求满足条件的所有P点坐标 5、已知:如图六,抛物线的顶点为点D,与y轴相交于点A,直线yax3与y轴也交于点A,矩形ABCO的顶点B在此抛物线上,矩形面积为12BOCOOyAOxD(图六)(1)求该抛物线的对称轴;(2)P是经过A、B两点的一个动圆,当P与轴相交,且在轴上两交点的距离为4时,求圆心P的坐标;(3)若线段DO与AB交于点E,以点 D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由6、如图七,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P(1)求证:MNNP为定值;(2)若BNP与MNA相似,求CM的长;(3)若BNP是等腰三角形,求CM的长(图七)7、如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2)用含S的代数式表示,并求出当S=36时点A1的坐标;图2O1A1OyxB1C1DMCBAOyx图1DM(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由 二次函数与等腰1、在直角坐标平面内,为原点,点的坐标为,点的坐标为,直线轴(如图7所示)点与点关于原点对称,直线(为常数)经过点,且与直线相交于点,联结(1)求的值和点的坐标;CMOxy1234图7A1BD(2)设点在轴的正半轴上,若是等腰三角形,求点的坐标;(3)在(2)的条件下,如果以为半径的圆与圆外切,求圆的半径3、如图,在平面直角坐标系中,直线l:y=2x8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作P.(1)连结PA,若PA=PB,试判断P与x轴的位置关系,并说明理由;(2)当k为何值时,以P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点, (1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使PBC的面积最大?,若存在,求出点P的坐标及PBC的面积最大值.若没有,请说明理由.5、如图,已知抛物线与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,联结CD,抛物线的对称轴与x轴相交于点E(1)求m的值;(2)求CDE的度数;(3)在抛物线对称轴的右侧部分上是否存在一点P,使得PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由yOxCABD(第24题图)E6、25(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分)如图七,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P(1)求证:MNNP为定值;(2)若BNP与MNA相似,求CM的长;(3)若BNP是等腰三角形,求CM的长(图七)27(本小题满分12分)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合)连结DE,作EFDE,EF与射线BA交于点F,设CE=x,BF=y(1)求y关于x的函数关系式; (2)若m=8,求x为何值时,y的值最大,最大值是多少?ABCDEF(第27题)(3)若,要使DEF为等腰三角形,m的值应为多少?图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ABC的面积为。(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。二次函数图象的变换1、如图,已知抛物线与轴交于点,与轴交于点(1)求抛物线的解析式及其顶点的坐标;(2)设直线交轴于点在线段的垂直平分线上是否存在点,使得点到直线的距离等于点到原点的距离?如果存在,求出点的坐标;如果不存在,请说明理由;(3)过点作轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?2、如图,已知抛物线L1: y=x2-4的图像与x轴交于A、C两点,(1)若抛物线l2与l1关于x轴对称,求l2的解析式;(2)若点B是抛物线l1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l2上;(3)探索:当点B分别位于l1在x轴上、下两部分的图像上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由。3、已知二次函数图象的顶点在原点,对称轴为轴一次函数的图象与二次函数的图象交于两点(在的左侧),且点坐标为平行于轴的直线过点(1)求一次函数与二次函数的解析式;(2)判断以线段为直径的圆与直线的位置关系,并给出证明;(3)把二次函数的图象向右平移个单位,再向下平移个单位,二次函数的图象与轴交于两点,一次函数图象交轴于点当为何值时,过三点的圆的面积最小?最小面积是多少?4、已知抛物线:(,为常数,且,)的顶点为,与轴交于点;抛物线与抛物线关于轴对称,其顶点为,连接,(1)请在横线上直接写出抛物线的解析式:_;(2)当时,判定的形状,并说明理由;(3)抛物线上是否存在点,使得四边形为菱形?如果存在,请求出的值;如果不存在,请说明理由2二次函数的对称轴在轴左侧,a、b为整数,它的图象与y轴交于点Q(0,-3),与x轴交于点A和B(1,0).其顶点为P,ABP的面积为8,求此函数的解析式思考题:已知抛物线的图象与轴交与、两点,关于的一元二次方程有两个实数根,为整数,且,求点坐标 二次函数与圆【例1】 如图,点,以点为圆心、为半径的圆与轴交于点已知抛物过点和,与轴交于点 求点的坐标,并画出抛物线的大致图象 点在抛物线上,点为此抛物线对称轴上一个动点,求 最小值 是过点的的切线,点是切点,求所在直线的解析式【巩固】已知抛物线与y轴的交点为C,顶点为M,直线CM的解析式 并且线段CM的长为(1)求抛物线的解析式。(2)设抛物线与x轴有两个交点A(X1 ,0)、B(X2 ,0),且点A在B的左侧,求线段AB的长。(3)若以AB为直径作N,请你判断直线CM与N的位置关系,并说明理由。【例2】 如图,在平面直角坐标系中,以点为圆心,半径为的圆交轴正半轴于点, 是的切线动点从点开始沿方向以每秒个单位长度的速度运动,点从点开始沿轴正方向以每秒个单位长度的速度运动,且动点、从点和点同时出发,设运动时间为(秒)当时,得到、两点,求经过、三点的抛物线解析式及对称轴;当为何值时,直线与相切?并写出此时点和点的坐标;在的条件下,抛物线对称轴上存在一点,使最小,求出点N的坐标并说明理由【巩固】已知二次函数图象的顶点在原点,对称轴为轴一次函数的图象与 二次函数的图象交于两点(在的左侧),且点坐标为平行于轴的直线过点 求一次函数与二次函数的解析式; 判断以线段为直径的圆与直线的位置关系,并给出证明; 把二次函数的图象向右平移个单位,再向下平移个单位,二次函数的图象与轴交于两点,一次函数图象交轴于点当为何值时,过三点的圆的面积最小?最小面积是多少?【例3】 如图1,的半径为,正方形顶点坐标为,顶点在上运动 当点运动到与点、在同一条直线上时,试证明直线与相切; 当直线与相切时,求所在直线对应的函数关系式; 设点的横坐标为,正方形的面积为,求与之间的函数关系式,并求出的最大值与最小值【巩固】已知的半径为,以为原点,建立如图所示的直角坐标系有一个正方形,顶点的坐标为,顶点在轴上方,顶点在上运动 当点运动到与点、在一条直线上时,与相切吗?如果相切,请说明理由,并求出所在直线对应的函数表达式;如果不相切,也请说明理由; 设点的横坐标为,正方形的面积为,求出与的函数关系式,并求出的最大值和最小值【巩固】如图,已知点从出发,以个单位长度/秒的速度沿轴向正方向运动,以为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆设点运动了秒,求: 点的坐标(用含的代数式表示); 当点在运动过程中,所有使与菱形的边所在直线相切的的值【例4】 已知:如图,抛物线与轴交于两点,与轴交于点, 求的值及抛物线顶点坐标; 过的三点的交轴于另一点,连结并延长交于点,过点的的切线分别交轴、轴于点,求直线的解析式; 在条件下,设为上的动点(不与重合),连结交轴于点,问是否存在一个常数,始终满足,如果存在,请写出求解过程;如果不存在,请说明理由【巩固】已知:抛物线,顶点,与轴交于、两点, 求这条抛物线的解析式 如图,以为直径作圆,与抛物线交于点,与抛物线对称轴交于点,依次连接、,点为线段上一个动点(与、两点不重合),过点作于,于,请判断是否为定值?若是,请求出此定值;若不是,请说明理由 在的条件下,若点是线段上一点,过点作,分别与边、相交于点、(与、不重合,与、不重合),请判断是否成立若成立,请给出证明;若不成立,请说明理由【例5】 如图,已知点的坐标是,点的坐标是,以为直径作,交轴的负半轴于点,连接、,过、三点作抛物线 求抛物线的解析式; 点是延长线上一点,的平分线交于点,连结,求直线的解析式; 在的条件下,抛物线上是否存在点,使得?如果存在,请求出点的坐标;如果不存在,请说明理由【巩固】已知二次函数的图象经过点,并与轴交于点和点,顶点为 求这个二次函数的解析式,并在直角坐标系中画出该二次函数的图象; 设为线段上的一点,满足,求点的坐标; 在轴上是否存在一点,使以为圆心的圆与所在的直线及轴都相切?如果存在,请求出点的坐标;若不存在,请说明理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大唐杯 考试题库及答案
- 孝感物流面试题目及答案
- 不忘国耻振兴中华1000字11篇范文
- 农村信息技术支持与服务外包合同
- 时间巧安排课件教学
- 交通运输服务及安全管理合同
- 蝴蝶飞进琉璃瓶700字12篇
- 合同审核标准流程表包含法律条款提示
- 纪检基本知识培训课件
- 业务流程再造方案设计指导手册
- 《镁铝合金的腐蚀与防护》课件
- 园区安全培训
- 初中数学+认识方程+课件++鲁教版(五四制)数学六年级下册
- 《MATLAB基础及应用》全套教学课件
- 《中医经络学说》课件
- 初高中一体化贯通培养教育管理探索与思考
- 港股基础知识入门培训
- 2 我是什么 第二课时(说课稿)-2024-2025学年统编版语文二年级上册
- 化工设备基础知识培训课件
- 保证金合同模板
- 标准预防-课件
评论
0/150
提交评论