




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Singleton设计模式的C#实现Singleton模式 Singleton(译为单件或单态)模式是设计模式中比较简单而常用的模式。 有些时候在整个应用程序中,会要求某个类有且只有一个实例,这个时候可以采用Singleton模式进行设计。用Singleton模式设计的类不仅能保证在应用中只有一个实例,而且提供了一种非全局变量的方法进行全局访问,称为全局访问点,这样对于没有全局变量概念的纯面向对象语言来说是非常方便的,比如C#。 本文用一个计数器的例子来描述在C#中如何使用Singleton模式:计数的值设计为计数器类的一个私有成员变量,它被4个不同的线程进行读写操作,为保证计数的正确性,在整个应用当中必然要求计数器类的实例是唯一的。 Singleton的实现方式 首先看看教科书方式的Singleton标准实现的两种方法,以下用的是类C#伪代码: 方法一: using System; namespace csPattern.Singleton public class Singleton static Singleton uniSingleton = new Singleton(); private Singleton() static public Singleton instance() return uniSingleton; 方法二: using System; namespace csPattern.Singleton public class Singleton static Singleton uniSingleton; private Singleton() static public Singleton instance() if (null = uniSingleton) uniSingleton = new Singleton _lazy(); return uniSingleton; Singleton模式的实现有两个技巧:一是使用静态成员变量保存“全局”的实例,确保了唯一性,使用静态的成员方法instance() 代替 new关键字来获取该类的实例,达到全局可见的效果。二是将构造方法设置成为private,如果使用new关键字创建类的实例,则编译报错,以防编程时候笔误。 上面方法二的初始化方式称为lazy initialization,是在第一次需要实例的时候才创建类的实例,与方法一中类的实例不管用不用一直都有相比,方法二更加节省系统资源。但是方法二在多线程应用中有时会出现多个实例化的现象。 假设这里有2个线程:主线程和线程1,在创建类的实例的时候可能会遇到一些原因阻塞一段时间(比如网络速度或者需要等待某些正在使用的资源的释放),此时的运行情况如下: 主线程首先去调用instance()试图获得类的实例,instance()成员方法判断该类没有创建唯一实例,于是开始创建实例。由于一些因素,主线程不能马上创建成功,而需要等待一些时间。此时线程1也去调用instance()试图获得该类的实例,因为此时实例还未被主线程成功创建,因此线程1又开始创建新实例。结果是两个线程分别创建了两次实例,对于计数器类来说,就会导致计数的值被重置,与Singleton的初衷违背。解决这个问题的办法是同步。 下面看看本文的计数器的例子的实现: 使用方法一: using System; using System.Threading; namespace csPattern.Singleton public class Counter static Counter uniCounter = new Counter(); /存储唯一的实例。 private int totNum = 0; /存储计数值。 private Counter() Thread.Sleep(100); /这里假设因为某种因素而耽搁了100毫秒。 /在非lazy initialization 的情况下, 不会影响到计数。. static public Counter instance() return uniCounter; public void Inc() totNum ; /计数加1。 public int GetCounter() return totNum; /获得当前计数值。 以下是调用Counter类的客户程序,在这里我们定义了四个线程同时使用计数器,每个线程使用4次,最后得到的正确结果应该是16: using System; using System.IO; using System.Threading; namespace csPattern.Singleton.MutileThread public class MutileClient public MutileClient() public void DoSomeWork() Counter myCounter = Counter.instance(); /方法一 /Counter_lazy myCounter = Counter_lazy.instance(); /方法二 for (int i = 1; i 5; i ) myCounter.Inc(); Console.WriteLine(线程0报告: 当前counter为: 1, Thread.CurrentThread.Name.ToString(), myCounter.GetCounter().ToString(); public void ClientMain() Thread thread0 = Thread.CurrentThread; thread0.Name = Thread 0; Thread thread1 =new Thread(new ThreadStart(this.DoSomeWork); thread1.Name = Thread 1; Thread thread2 =new Thread(new ThreadStart(this.DoSomeWork); thread2.Name = Thread 2; Thread thread3 =new Thread(new ThreadStart(this.DoSomeWork); thread3.Name = Thread 3; thread1.Start(); thread2.Start(); thread3.Start(); DoSomeWork(); /线程0也只执行和其他线程相同的工作。 以下为Main函数,本程序的测试入口: using System; namespace csPattern.Singleton public class RunMain public RunMain() static public void Main(string args) MutileThread.MutileClient myClient = new MutileThread.MutileClient(); myClient.ClientMain(); System.Console.ReadLine(); 执行结果如下: 线程Thread 1报告: 当前counter为: 2 线程Thread 1报告: 当前counter为: 4 线程Thread 1报告: 当前counter为: 5 线程Thread 1报告: 当前counter为: 6 线程Thread 3报告: 当前counter为: 7 线程Thread 3报告: 当前counter为: 8 线程Thread 3报告: 当前counter为: 9 线程Thread 3报告: 当前counter为: 10 线程Thread 0报告: 当前counter为: 1 线程Thread 0报告: 当前counter为: 11 线程Thread 0报告: 当前counter为: 12 线程Thread 0报告: 当前counter为: 13 线程Thread 2报告: 当前counter为: 3 线程Thread 2报告: 当前counter为: 14 线程Thread 2报告: 当前counter为: 15 线程Thread 2报告: 当前counter为: 16 由于系统线程调度的不同,每次的执行结果也不同,但是最终结果一定是16。 方法一中由于实例一开始就被创建,所以instance()方法无需再去判断是否已经存在唯一的实例,而返回该实例,所以不会出现计数器类多次实例化的问题。 使用方法二: using System; using System.Threading; using System.Runtime.CompilerServices; namespace csPattern.Singleton public class Counter_lazy static Counter_lazy uniCounter; private int totNum = 0; private Counter_lazy() Thread.Sleep(100); /假设多线程的时候因某种原因阻塞100毫秒 MethodImpl(MethodImplOptions.Synchronized) /方法的同步属性 static public Counter_lazy instance() if (null = uniCounter) uniCounter = new Counter_lazy(); return uniCounter; public void Inc() totNum ; public int GetCounter() return totNum; 不知道大家有没有注意到instance()方法上方的MethodImpl(MethodImplOptions.Synchronized) 语句,他就是同步的要点,他指定了instance()方法同时只能被一个线程使用,这样就避免了线程0调用instance()创建完成实例前线程1就来调用instance()试图获得该实例。 根据MSDN的提示,也可以使用lock关键字进行线程的加锁,代码如下: using System; using System.Threading; namespace csPattern.Singleton public class Counter_lazy static Counter_lazy uniCounter; static object myObject = new object(); private int totNum = 0; private Counter_lazy() Thread.Sleep(100); /假设多线程的时候因某种原因阻塞100毫秒 static public Counter_lazy instance() lock(myObject) if (null = uniCounter) uniCounter = new Counter_lazy(); return uniCounter; public void Inc() totNum ; public int GetCounter() return totNum; lock()是对一个对象加互斥锁,只允许一个线程访问其后大括号中语句块,直到该语句块的代码执行完才解锁,解锁后才允许其他的线程执行其语句块。 还可以使用Mutex类进行同步,定义private static Mutex mut = new Mutex();后,修改instance()如下,同样可以得到正确的结果: static public Counter_lazy insta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年涤纶纤维行业当前市场规模及未来五到十年发展趋势报告
- 2025年瓦楞包装行业当前发展趋势与投资机遇洞察报告
- 2025年移动支付行业当前发展趋势与投资机遇洞察报告
- 收取发票的注意事项课件
- 2024年医保培训试题(附答案)
- (2025)《职业教育法》考试题及答案
- 2025年初级药师基础知识考试模拟题及答案
- 2024年公共营养师(健康饮食、营养搭配)等知识考试题库与答案
- 2025年注册安全工程师《安全生产管理》知识考试题与答案
- 2025年SYB创业者学习知识培训考试题库(附含答案)
- 光伏居间的合同8篇
- 从业人员培训管理制度
- 医疗风险防控培训课件
- 酒店前台礼貌礼节培训
- 诊疗规范培训课件
- 幸福心理学-(彭凯平)
- 2025年中邮保险招聘笔试参考题库含答案解析
- 《中国老年糖尿病诊疗指南(2024版)》解读课件
- 《中国女性乳腺癌患者糖尿病和糖尿病前期管理专家共识》 (2024版)
- 特种设备安全检查与巡查制度
- 游戏运营数据监控与分析技术应用指南
评论
0/150
提交评论