




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级上册数学,22.1.4二次函数y=ax2+bx+c的图象和性质(1),说出二次函数 图象的开口方向,对称轴,顶点坐标.它是由y=-4x2怎样平移得到的?,情境导入,本节目标,1.会用配方法或公式法将一般式yax2bxc化成顶点式y=a(x-h)2+k.(难点)2.会熟练求出二次函数一般式yax2bxc的顶点坐标、对称轴.(重点),对称轴是x=3,顶点坐标是(3,-5),对称轴是x=8,顶点坐标是(8,1),对称轴是x=0,顶点坐标是(0,12),根据公式确定下列二次函数图象的对称轴和顶点坐标:,预习反馈,我们已经知道y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论 的图象和性质?,问题1 怎样将 化成y=a(x-h)2+k的形式?,二次函数y=ax2+bx+c的图象和性质,课堂探究,配方可得,课堂探究,问题2 你能说出 的对称轴及顶点坐标吗?,答:对称轴是直线x=6,顶点坐标是(6,3).,问题3 二次函数 可以看作是由 怎样平移得到的?,答:平移方法1: 先向上平移3个单位,再向右平移6个单位得到的; 平移方法2: 先向右平移6个单位,再向上平移3个单位得到的.,课堂探究,问题4 如何用描点法画二次函数 的图象?,解: 先利用图形的对称性列表,7.5,5,3.5,3,3.5,5,7.5,然后描点画图,得到图象如右图.,O,课堂探究,问题5 结合二次函数 的图象,说出其性质。,x=6,当x6时,y随x的增大而增大.,试一试 你能用上面的方法讨论二次函数y=-2x2-4x+1的图象和性质吗?,O,课堂探究,我们如何用配方法将一般式y=ax2+bx+c(a0)化成顶点式y=a(x-h)2+k?,课堂探究,y=ax+bx+c,课堂探究,例1 填表:,(1,3),x=1,最大值1,(0,-1),y轴,最大值-1,最小值-6,( ,-6),直线x=,典例精析,例2 已知二次函数y=x22bxc,当x1时,y的值随x值的增大而减小,则实数b的取值范围是( ) Ab1 Bb1 Cb1 Db1,解析:二次项系数为10,抛物线开口向下,在对称轴右侧,y的值随x值的增大而减小,由题设可知,当x1时,y的值随x值的增大而减小,抛物线y=x22bxc的对称轴应在直线x=1的左侧而抛物线y=x22bxc的对称轴 ,即b1,故选择D .,D,典例精析,二次函数y=ax2+bx+c的图象和性质,(1),(2),如果a0,当x 时,y随x的增大而增大.,如果a 时,y随x的增大而减小.,本课小结,顶点:,对称轴:,y=ax2+bx+c(a 0)(一般式),配方法,公式法,(顶点式),本课小结,1.已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:,A.y轴 B.直线x= C. 直线x=2 D.直线x=,则该二次函数图象的对称轴为( ),D,随堂检测,2.已知二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论:(1)a、b同号;(2)当x=1和x=3时,函数值相等;(3) 4a+b=0;(4)当y=2时,x的值只能取0;其中正确的是 .,直线x=1,(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环境监测工程师职业水平测验试题及答案解析
- 2025年绿化主管招聘面试问题集
- 2025年护理学专业技能考试试题及答案解析
- 2025年安全用电知识竞赛题及答案
- 2025年初创企业高管职位面试指南与预测题集萃
- 2025年机械伤害应急处理手册及测试题
- 2025年物业安保主管面试常见问题集锦
- 2025年工程设计师执业能力评价试卷及答案解析
- 2025年财务管理主管实战面试题集
- 2025年建筑员笔试高频题解析
- 保安员在岗培训法律-2
- 初中英语中考专题训练阅读理解-应用文篇
- 《古文观止 上下 》读书笔记思维导图PPT模板下载
- YC/T 210.2-2006烟叶代码第2部分:烟叶形态代码
- GB/T 20671.1-2006非金属垫片材料分类体系及试验方法第1部分:非金属垫片材料分类体系
- 熵权法教学讲解课件
- 医师病理知识定期考核试题与答案
- 课堂因“融错·容错·溶措”而精彩
- 阳光晾衣房钢结构专项施工方案
- 安宁疗护服务流程
- 热分析DSC培训new
评论
0/150
提交评论