CDD图像传感器的发展综述1.doc_第1页
CDD图像传感器的发展综述1.doc_第2页
CDD图像传感器的发展综述1.doc_第3页
CDD图像传感器的发展综述1.doc_第4页
CDD图像传感器的发展综述1.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CDD传感器的发展综述摘要:CDD图像传感器以其光谱响应宽、动态范围大、灵敏度和几何精度高、噪声低、便于进行数字化处理和与计算机连接等优点,在工业测控中得到广泛应用。该文简要介绍了CCD图像传感器的检测原理和它在工业检测中的应用现状,分析了现有CCD检测技术在应用中存在的问题和局限,指出了CCD传感器在工业检测应用中的发展方向。 关键词:CCD;检测技术;图像传感器 Abstract:The CCD image sensors have been widely used in industrial process measurement and control systems owing to their wide spectral response,wide dynamic range,high sensitivity and geometric precision ,low noise and convenience for digital processing and connecting computers.The p aper gives a brief introduction about the measuring principle of the CCD image sensor and its application status in industrial measurements.Some difficulties an d limitations existing in its application are analyzed and the trend of its application is pointed out. Key words:CCD;measurement technology;image sensor 0 引言 电荷耦合器件(Charge Couple Device,CCD)是一种以电荷为信号载体的微型 图像传感器,具有光电转换和信号电荷存储、转移及读出的功能,其输出信号通常是符合电 视标准的视频信号,可存储于适当的介质或输入计算机,便于进行图像存储、增强、识别等处理1。 自CCD于1970年在贝尔实验室诞生以来,CCD技术随着半导体微电子技术的发展而迅速发展,CCD传感器的像素集成度、分辨率、几何精度和灵敏度大大提高,工作频率范围显著增加,可高速成像以满足对高速运动物体的拍摄2,并以其光谱响应宽、动态范围大、灵敏度和几何精度高、噪声低、体积小、重量轻、低电压、低功耗、抗冲击、耐震动、抗电磁干扰能力强、坚固耐用、寿命长、图像畸变小、无残像、可以长时间工作于恶劣环境、便于进行数字化处理和与计算机连接等优点,在图像采集、非接触测量和实时监控方面得到了广泛应用,成为现代光电子学和测试技术中最活跃、最富有成果的研究领域之一1,3。 1 CCD传感器的检测原理 CCD是由光敏单元、输入结构和输出结构等组成的一体化的光电转换器件,其突出特点是以电荷作为信号载体,其基本工作原理见文献4,5。由CCD传感器、光学成像系统、数据采集和处理系统构成的尺寸测量装置,具有测量精度高、速度快、应用方便灵活等特点,是现有机械式、光学式、电磁式测量仪器所无法比拟的。在尺寸测量中,通常采用合适的照明系统使被测物体通过物镜成像在CCD靶面上,通过对CCD输出的信号进行适当处理,提取测量对象的几何信息,结合光学系统的变换特性,可计算出被测尺寸2。2 CCD传感器的发展状况 CCD检测技术作为一种能有效实现动态跟踪的非接触检测技术,被广泛应用于尺寸、位移、表面形状检测和温度检测等领域。 2.1零件尺寸的精确测量 1997年,J.B.Liao6等将CCD摄像系统应用在三维坐标测量机(Coordinate Meas uring Machine,CMM)上,实现了三维坐标的自动测量。他们将一个面阵CCD安装在与CMM的3个轴线都成45角的固定位置,通过计算机视觉系统与CMM原来的控制系统连接来控制探头和工件的移动,以此探测探头和工件的三维位置。该方法不需要对原CMM系统进行改变,只要将CCD视觉系统连入原有的测量机即可。由于测量系统中只用一个面阵CCD,从而简化了测量系统结构,降低了系统成本,减小了因手工操作引起的误差,提高了测量效率,并能避免单独使用CCD测量时,因光衍射而造成的边缘检测误差,可用于工件三维尺寸的精确测量。但该方法需要对工作环境和工件形状具有一定的先验知识,使其应用范围受到较大限制。为此,V.H.Chan和C.Bradley等人7提出了一种利用复合传感器的自动测量方法。该方法将黑白CCD和坐标探头一同安装在CMM的Z轴工作臂的末端,探测前先由C CD在工件的前后左右和上方对工件成像,并通过基于神经网络的立体配对算法确定工件表面位置和面积,从而决定探头的探测路径。该方法的智能程度较高,可高效测量形状复杂工件的三维尺寸,并可根据测量数据构造工件的CAD模型,但计算复杂,需要使用运算速度快、内存容量大的计算机,且算法立体匹配精度有待提高。 以上测量系统虽然因引入CCD技术而得到明显改进,但仍属于接触式测量,无法准确测量某些弹性和软性工件。最近,P.F.Luo等人8用CCD摄像头代替CMM的探头,结合激光 测距技术实现了对一维尺寸的非接触精确测量。该方法采用了亚像素精度检测技术,利用激光测距器进行距离校正,有效地提高了检测精度,其精确测量范围为1300 mm,但这种方法只能测量一维尺寸。P.F.Luo等认为该系统经改进后可实现二维尺寸的精确测量,因工作台滑动引起振动而导致的数据波动也能被有效减小,但尚未见到成功的实例。 2.2微小尺寸的测量 为检测BGA(ball grid array,球珊阵列)芯片的管脚高度是否共面,美国RVSI公司研制出一种基于激光三角法的单点离线检测设备1。该设备每次只能测量1个管脚,测量速 度慢,无法实现在线测量。1999年,Kim,Pyunghyun9等人提出了一种新的立体测 量方法。该方法用激光线源照射到芯片管脚上,被照亮的管脚图像经由互成一定角度的两套CCD摄像系统采集后,输入计算机进行立体匹配,利用透视变换模型和坐标变换关系,计算 出管脚高度和纵向间距,再使被测芯片在步进电机的带动下做单向运动,从而实现三维尺寸测量,并引入电容测微仪实时监测工作台位置变动,进行动态误差补偿,有效减小了因振动造成的误差。2001年,C.J.Tay,X.He10等人利用图像识别和数字相关等技术简化了计算过程,使得只需几秒钟便可计算上百个管脚的高度,从而有效地提高了检测系统的实用性。最近,C.J.Tay11等根据被倾斜光照射的物体的像与影之间的固有关系,提出了一种基于光学阴影简便测量BGA管脚高度的方法。该方法利用激光对被测芯片的管脚进行倾斜照射以产生管脚阴影,管脚及其阴影由带远焦显微镜的CCD相机采集后,输入计算机,由计算机软件根据影和像的相互关系计算出管脚高度,笔者提出了两种简洁的计算方法,可避免因光衍射而造成的边缘检测误差,计算简单快速,但要求高精度的机械定位装置,且每次只能检测几个管脚,而且对芯片平整度和检测环境要求很高,还需要进一步改进后才能实用化。 近年来,将CCD技术和莫尔条纹、数字全息、电子斑点干涉等技术相结合以精确测量微小尺寸的技术正成为一种具有很大潜力的研究发展方向12。 2.3形变测量 尽管利用线阵CCD测量材料变形具有非接触、无磨损、精度高、不引入附加误差、能测量材 料拉伸的全过程,特别是测量材料在断裂前后的应力应变曲线,得到材料的各种极限特性 参数等优点,但只能测量材料拉伸时在轴线方向的均一形变。为此,Scheday,Miehe和Chevalier等人13开展了采用面阵CCD测量材料形变的研究。在此基础上,Stefan Hartmann等人14借助面阵CCD研究了橡胶材料在拉伸和压缩时的形变情况。即在圆柱 形黑色测试样品的轴线方向等距标定几个白点,用CCD摄取相应图像并送入计算机进行处理,通过检测白点标记间的距离来计算样品受力时轴向的形变,并通过轮廓检测算法得到轴对称的圆柱型样品的轮廓尺寸,经过数据校正,可计算出被测样品半径方向上的形变。这种方法可同时获得两个方向上的形变量,并测量出材料被压缩时的非均一形变。S.Claudinon,P.Lamesle等人15采用类似方法研究了淬火钢铁样品在气冷时的形变,解决了高温 样品的尺寸测量问题,并能连续测量不同温度下的形变量,但在低温时,易产生测量误差。J.-M.Siguier等16为研究大型科学气球气囊表面材料的性质,利用两个CCD摄像 机摄取被测物体的表面图像,通过立体相关方法获取样品的三维形变。但这种测量方法技术复杂,且在与材料表面垂直的法线方向上获得的数据偏小。 2.4机械磨损度测量 虽然以上方法可以测量各种工件的尺寸或形变,但在测量某些特殊工件时却受到许多限制。例如,在检测高速切割机上的刀具磨损度时,需要将刀具卸下才能测量。为此,一些研究人 员致力于用机器视觉检测刀具磨损程度的研究。2000年,T.Pfeifer和L.Wiegers17通过比较各种测量方法,指出基于机器视觉的检测系统最具优势和潜力,并构建了一套由CCD摄像头、照明设备和夹具等组成的非接触检测系统,该系统在适当位置对刀口侧面成像 ,将采集的刀具图像信号输入计算机,计算出刀具磨损轮廓,以此判断刀具磨损级别,确定刀具更换时间。但该系统的图像处理过程复杂,适应范围窄,检测精度和效率也有待提高。2002年,JeonHa Kim等人18在此基础上,对误差因素逐一进行了实验分析,确定了最佳光线照射强度、角度、拍摄角度等,并将光源通过光纤插入镜头周围以减小因阴影 产生的误差,使夹具自由转动角度增大,成像设备尺寸缩小,提高了系统的使用范围。同时,通过采用磨损前后刀具横向尺寸差来计算磨损度,大大简化了图像处理过程。对4种不同刀具的实验测量表明,该系统的测量信噪比可达到46 dB,测量精度和速度显著提高,并可实现实时在线测量,但不适合测量几何形状太复杂的刀具。 3 结论 综上所述,CCD应用技术已成为集光学、电子学、精密机械与计算机技术为一体的综合性技术,并被广泛应用于现代光学和光电测试技术领域。事实上,凡可用胶卷和光电检测技术的地方几乎都可以应用CCD。随着半导体材料与技术的发展,特别是超大规模集成电路技术的不断进步,CCD图像传感器的性能也在迅速提高,将CCD技术、计算机图像处理技术与传统测量方法相结合,能获取被测对象的更多信息,实现快速、准确的无接触测量,显著提高测量技术水平和智能化水平,因此,CCD技术必将以其突出的优点而在工业测控、机器视觉、多媒体技术、虚拟现实技术及其他许多领域得到越来越广泛的应用。 参考文献 1王庆有.CCD应用技术M.天津:天津大学出版社,2000 2王跃科,杨华勇.CCD图像传感技术的现状与应用前景J.光学仪器,199 6,18(5):3236 3科学CCD的过去、现状和未来J.激光与光电子学进展,1995,(10):810 4晏磊,张伯旭,常炳国.CCD图像传感器及其数字相机技术J.信息记录材料,2002,3(1):4549 5凌云光视数字图像公司CCD & CMOS图像和机器视觉产品手册M. 6 J.B.Liao,M.H.Wu.A coordinate measuring machine vision systemJ. Computers in Industry,1999,(38):239248 7V.H.Chan,C.Bradley.A multisensor approach to automating coordinate measuring machinebased reverse engineeringJ.Computers in Industry,200 1,(44):105115 8P.F.Luo.Application of computer vision and laser interferometer to the inspection of line scaleJ.Optics and Lasers in Engineering,2004,(42):563 584 9Kim,Pyunghyun,Rhee,Sehun.Threedimensional inspection of ball grid array using laser vision systemJ.IEEE Transactions on Electronics Packaging Manufacturing,1999,22(2):151155 10C.J.Tay,He.X.,Kang.X.Coplanarity study on ball grid array packaging.Optics Communications,2001,40(8):16081612 11C.J.Tay,S.H.Wang,C.Quan.Measurement of a microsolder ball height using a laser projection methodJ.Optics Communications,2004,234(16):77 86 12Chang RongSeng, Shou JinYi.Analysis of CCD moire pattern for microrange measurements using the wavelet transformJ.Optics and Laser Technology,2003,35:4347 13Luc Chevalier,Sylvain Calloch,F.Hild.Digital image cor relation used to analyze the multiaxial behaviour of rubberlike materialsJ.European Journal of MechanicsASolids,2001,20(2):169187 14Stefan Hartmann,Tobias Tschpe,Lothar Schreiber.Fini te deformations of a carbon blackfilled rubber.Experiment,optical measurement and material parameter identification using finite elementsJ.European Journal of MechanicsASoli

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论