回归模型结果分析_第1页
回归模型结果分析_第2页
回归模型结果分析_第3页
回归模型结果分析_第4页
回归模型结果分析_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

回归模型结果分析为了提高回归模型的准确性,上文中我们分别按月份、颜色比、退偏振比三种情况进行回归建模,从以上的分析结果看来,按月份划分建立的回归模型反演效果较好。为了更好地对不同情况下得到的回归模型及反演结果进行对比,我们把相同情况下得到的所有反演结果表示在一张图上,并与相应的太阳光度计观测值进行对比分析。 (a) (b) (c) 图4.1图4.1中(a)、(b)、(c)三幅图为分别按月份、颜色比和退偏振比建立回归模型后得出的所有颗粒物体积浓度的反演结果与相应太阳光度计观测值的对比分析图。图(a)数据的样本容量为250,图(b)和图(c)的样本容量为150,虽然图(a)样本容量多,但是与图(b)和图(c)相比,图(a)中数据更为集中,大部分数据的反演结果与太阳光度计观测值接近,出现误差的数据少且误差小,图(c)的反演结果略优于图(b),总体来说按月份建立的颗粒物体积浓度的回归模型最准确,而按颜色比建立的回归模型准确性较差。 (a) (b) (c) 图4.2图4.2中(a)、(b)、(c)三幅图为分别按月份、颜色比和退偏振比建立回归模型后得出的所有有效粒子半径的反演结果与相应太阳光度计观测值的对比分析图。图(a)样本容量较多且数据比较集中,但有一部分数据反演结果明显偏小,严重影响了回归模型的准确性,图(b)数据较离散,部分数据误差大,线性相关系数较小,图(c)个别数据误差大,虽然数据集中程度没有图(a)好。但是数据横纵坐标的差异比其他两幅图小。在确定最优样本容量时,我们发现随着样本容量的增加,线性相关系数减小,所以在无法统一样本容量且线性相关系数差异不大的情况下无法确定在哪种情况下建立的回归模型最准确。所以在建立有效粒子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论