




已阅读5页,还剩53页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章应力状态与强度理论 材料力学 7 1应力状态的概念 7 4 7 5三向应力状态研究 应力圆法 7 6广义胡克定律 7 7复杂应力状态下的变形比能 7 8强度理论 7 2二向应力 三向应力状态的实例 平面应力状态分析 图解法 7 3平面应力状态分析 解析法 应力状态与强度理论 7 应力状态的概念 应力状态与强度理论 一 引言 1 铸铁与低碳钢的拉 压 扭试验现象是怎样产生的 铸铁 2 组合变形杆将怎样破坏 四 普遍状态下的应力表示 三 单元体 单元体 构件内的点的代表物 是包围被研究点的无限小的几何体 常用的是正六面体 单元体的性质 a 每个面上 应力均布 b 平行面上 应力相同 二 一点的应力状态 过一点有无数的截面 一点的各个截面上应力情况的集合 称为这点的应力状态 x y z s x sz s y 应力状态与强度理论 应力状态与强度理论 五 剪应力互等定理 x y z s x sz s y 六 原始单元体 已知单元体 例1画出下列图中的A B C点的已知单元体 应力状态与强度理论 A A 课堂练习用单元体表示圆轴受扭时 轴表面任一点的应力状态 用单元体表示矩形截面梁横力弯曲时 梁顶 梁底及其它各点的应力状态 七 主平面 主应力 主平面 PrincipalPlane 剪应力为零的截面 主应力 PrincipalStress 主平面上的正应力 主应力排列规定 按代数值大小 应力状态与强度理论 s1 s2 s3 x y z sx sy sz 三个主平面一定互相垂直 单向应力状态 UnidirectionalStateofStress 一个主应力不为零的应力状态 二向应力状态 PlaneStateofStress 二个主应力不为零的应力状态 平面应力状态 应力状态与强度理论 三向应力状态 Three DimensionalStateofStress 三个主应力都不为零的应力状态 7 2二向和三向应力状态的实例 应力状态与强度理论 s s p O D A B y s s x D 1 纵向应力 y s s z O 应力状态与强度理论 2 环向应力 外表面 内表面 三向应力状态的实例 在滚珠轴承中 轴承外圈在与滚珠接触点处的应力状态为三向应力状态 应力状态与强度理论 7 3二向应力状态分析 解析法 应力状态与强度理论 sx txy sy sx sy 正应力以拉应力为正 压应力为负 剪应力对单元体内任意点的矩为顺时针转向时为正 反之为负 由轴逆时针转过角为正 反之为负 设 斜截面面积为dA 由分离体平衡得 一 任意斜截面上的应力 应力状态与强度理论 规定 考虑切应力互等和三角变换 得 同理 应力状态与强度理论 应力状态与强度理论 例1 求图示单元体斜截面上的应力 解 解 应力状态与强度理论 二 主应力 主平面 由上式求出相差的两个角度 从而确定两个互相垂直的平面 分别作用着最大 最小正应力 主平面方位的确定 约定 则两个角度 中 锐角确定 作用的平面 应力状态与强度理论 二 主应力 主平面 由上式求出相差的两个角度 从而确定两个互相垂直的平面 分别作用着最大 最小正应力 主平面方位的确定 约定 则两个角度 中 锐角确定 作用的平面 应力状态与强度理论 例2 求图示单元体的主应力及主平面 在单元体上画出主平面和主应力 应力状态与强度理论 解 应力状态与强度理论 例3分析圆轴扭转时的应力状态 解 确定危险点并画其原始单元体 求极值应力 x 铸铁圆轴扭转破坏现象分析 应力状态与强度理论 x 2 2 2 xy y x min max t s s t t 应力状态与强度理论 三 最大切应力 则 即最大 最小切应力作用面与主平面的夹角为450 四 两个互相垂直截面上应力的关系 应力状态与强度理论 互相垂直的两个截面上的正应力之和为一值 即切应力互等定理 7 4平面应力状态分析 图解法 对上述方程消去参数 2 得 一 应力圆 StressCircle 应力状态与强度理论 将上式改写成 上式中皆为已知量 故此方程是以和为变量的圆周方程 这一圆称为应力圆 或莫尔圆 由德国工程师OttoMohr提出 由公式可见 在 直角坐标系中 应力圆具有以下特征 1 圆心坐标为 圆心必在坐标轴上 2 半径为 应力状态与强度理论 3 应力圆圆周上任一点的纵 横坐标 分别代表单元体中某一相应斜截面上的和 因此应力圆圆周上所有各点的坐标就表达了一点的应力状态 应力状态与强度理论 建立应力坐标系 如下图所示 注意选好比例尺 二 应力圆的画法 在坐标系内确定点A x xy 和点B y yx AB与s轴的交点C便是圆心 以C为圆心 以AC为半径画圆 应力圆 O s t C A sx txy B sy tyx 2a D sa ta 应力状态与强度理论 s t C B sy tyx 2a D sa ta 应力状态与强度理论 A sx txy 三 单元体与应力圆的对应关系 转向相同 单元体上的截面旋转的方向与应力圆圆周上点的旋转方向相同 角度二倍 单元体上的截面旋转角 则应力圆圆周上的点旋转角 应力状态与强度理论 点面对应 单元体上的截面与应力圆上的点一一对应 四 在应力圆上标出极值应力 O s t A sx txy B sy tyx 应力状态与强度理论 例4求图示单元体的主应力及主平面的位置 单位 MPa A B 解 应力坐标系如图 AB的垂直平分线与s轴的交点C便是圆心 以C为圆心 以AC为半径画圆 应力圆 s1 s2 在坐标系内画出点 应力状态与强度理论 s1 s2 主应力及主平面如图 A B 应力状态与强度理论 解法2 解析法 分析 建立坐标系如图 应力状态与强度理论 由 已知 求出 课堂练习 1 画出单向拉伸 单向压缩应力状态的应力圆 应力状态与强度理论 2 画出纯剪切应力状态的应力圆 应力状态与强度理论 7 5三向应力状态研究 应力圆法 s2 s1 1 三向应力状态 应力状态与强度理论 2 三向应力状态分析 弹性理论证明 图a单元体内任意一点任意截面上的应力都对应着图b的应力圆上或阴影区内的一点 图a 图b 整个单元体内的最大切应力为 应力状态与强度理论 7 6广义胡克定律 一 单向拉伸应力状态下 应力 应变关系 胡克定律 二 纯剪切应力状态下 应力 应变关系 应力状态与强度理论 三 复杂应力状态下的应力 应变关系 根据叠加原理 得 sz sy sx 应力状态与强度理论 同理 上式称为广义胡克定律 主应力 主应变关系 四 平面应力状态下的应力 应变关系 应力状态与强度理论 sx sy 五 体积应变与应力分量间的关系 体积应变 体积应变与应力分量间的关系 应力状态与强度理论 略去高阶微量 例5已知一受力构件自由表面上某一点处在表面内的主应变分别为 1 240 10 6 3 160 10 6 弹性模量E 210GPa 泊松比为 0 3 试求该点处的主应力及另一主应变 所以 该点处为平面应力状态 应力状态与强度理论 7 7复杂应力状态下的应变能密度 应力状态与强度理论 应力状态与强度理论 图a 图b 图c m m m 3 体积改变能密度 畸变能密度 因为图C的体积应变 应力状态与强度理论 则畸变能密度 式中 例6证明三个弹性常数间的关系 纯剪切单元体的应变能密度为 纯剪切单元体应变能密度用主应力表示为 应力状态与强度理论 一 引子 7 8强度理论 1 铸铁与低碳钢的拉 压 扭试验现象是怎样产生的 铸铁 2 组合变形杆将怎样破坏 应力状态与强度理论 二 强度理论 是关于 构件发生强度失效 failurebyloststrength 起因 的假说 材料的破坏形式 屈服 断裂 单向应力状态的强度条件是以实验为基础建立的 例轴向拉伸的强度条件 复杂应力状态下的强度条件不能靠实验来建立强度条件的原因 1 实验手段的困难 2 工作量的繁重 应力状态与强度理论 三 四个常用强度理论 1 最大拉应力 第一强度 理论 认为构件的断裂是由最大拉应力引起的 当最大拉应力达到材料单向拉伸的强度极限时 构件就断了 破坏判据 强度准则 实用范围 实用于破坏形式为脆断的构件 伽利略播下了第一强度理论的种子 应力状态与强度理论 2 最大伸长线应变 第二强度 理论 认为构件的断裂是由最大拉应力引起的 当最大伸长线应变达到材料单向拉伸试验下的极限应变时 构件就断了 破坏判据 强度准则 实用范围 实用于破坏形式为脆断的构件 马里奥特关于变形过大引起破坏的论述 是第二强度理论的萌芽 应力状态与强度理论 3 最大切应力 第三强度 理论 认为构件的屈服是由最大切应力引起的 当最大切应力达到单向拉伸试验的极限切应力时 构件就屈服了 破坏判据 实用范围 实用于破坏形式为屈服的构件 强度准则 杜奎特 C Duguet 提出了最大切应力理论 应力状态与强度理论 4 畸变能密度理论 第四强度 理论 认为构件的屈服是由畸变能密度引起的 当畸变能密度达到单向拉伸试验屈服时的畸变能密度时 构件就屈服了 破坏判据 强度准则 实用范围 实用于破坏形式为屈服的构件 麦克斯威尔最早提出了畸变能密度理论 应力状态与强度理论 应力状态与强度理论 综合以上各式 可将四个强度理论的强度条件写成统一的形式 相当应力 四个强度理论的相当应力 四 强度理论的应用 一 强度计算的步骤 1 外力分析 确定全部的外力 2 内力分析 画内力图 确定可能的危险面 3 应力分析 画危险截面应力分布图 确定危险点并画出其单元体 求主应力 4 强度分析 选择适当的强度理论 计算相当应力 然后进行强度计算 应力状态与强度理论 二 强度理论的选用原则 依破坏形式而定 1 脆性材料 当最小主应力大于等于零时 使用第一理论 3 简单变形时 一律用与其对应的强度准则 如拉压 扭转 2 塑性材料 当最小主应力大于等于零时 使用第一理论 4 破坏形式还与温度 变形速度等有关 当最大主应力小于等于零时 使用第三或第四理论 其它应力状态时 使用第三或第四理论 应力状态与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业互联网平台高效数据清洗算法研究与应用对比报告
- 新能源行业2025人才流动预测揭秘竞争格局报告
- 2025年一级建造师之一建工程法规自测模拟预测题库(附答案)
- 2025年跌倒、坠床、压疮相关知识考试题及答案
- 新能源安全生产标准化建设2025年成效与行业应用前景分析综述
- 2025年垃圾焚烧发电与新能源协同处理技术应用案例集报告
- 2024-2025学年环境影响评价工程师之环境影响评价相关法律法规综合提升测试卷含答案详解(培优B卷)
- 2025年计算机操作员练习题含答案详解(培优)
- 2024年反射疗法师大赛理论模拟试题(易错题)附答案详解
- 考试制度公平性分析-洞察及研究
- 万科万科-企业文化手册
- 会诊记录本完整版本
- 七年级上册全部古诗词【注释与主旨】(最完整)
- 《供应商开发》课件
- 侵权赔偿索赔授权委托书法院
- 《汉译英理论与实践》课件
- 国有企业招标采购相关法律法规与国有企业采购操作规范
- 部编版四年级语文下册课件:4《乡下人家》第一课时
- 班级文化建设一等奖-完整版课件
- 2023年国际心肺复苏(CPR)与心血管急救(ECC)指南
- 财务公司有价证券投资管理办法
评论
0/150
提交评论