选修4-4平面直角坐标系PPT幻灯片课件_第1页
选修4-4平面直角坐标系PPT幻灯片课件_第2页
选修4-4平面直角坐标系PPT幻灯片课件_第3页
选修4-4平面直角坐标系PPT幻灯片课件_第4页
选修4-4平面直角坐标系PPT幻灯片课件_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一讲坐标系 平面直角坐标系 1 复习平面直角坐标系基本结论 1 两点间的距离公式 2 中点坐标公式 3 点到直线距离公式 4 直线 圆 椭圆 双曲线 抛物线的定义与方程 2 声响定位问题 某中心接到其正东 正西 正北方向三个观测点的报告 正西 正北两个观测点同时听到一声巨响 正东观测点听到巨响的时间比其他两个观测点晚4s 已知各观测点到中心的距离都是1020m 试确定该巨响的位置 假定当时声音传播的速度为340m s 各相关点均在同一平面上 3 以接报中心为原点O 以BA方向为x轴 建立直角坐标系 设A B C分别是西 东 北观测点 则A 1020 0 B 1020 0 C 0 1020 设P x y 为巨响为生点 因A点比B点晚4s听到爆炸声 故 PA PB 340 4 1360 由B C同时听到巨响声 得 PC PB 故P在BC的垂直平分线PO上 PO的方程为y x 由双曲线定义P点在以A B为焦点的双曲线上 a 680 c 1020 b2 c2 a2 10202 6802 5 3402 所以双曲线的方程为 用y x代入上式 得 答 巨响发生在信息中心的西偏北450 距中心 4 例1 已知 ABC的三边a b c满足b2 c2 5a2 BE CF分别为边AC CF上的中线 建立适当的平面直角坐标系探究BE与CF的位置关系 解 以 ABC的顶点 为原点 边AB所在的直线x轴 建立直角坐标系 由已知 点A B F的坐标分别为 所以2x2 2y2 2c2 5cx 0 由b2 c2 5a2 AC 2 AB 2 5 BC 2 即x2 y2 c2 5 x c 2 y2 因为 所以 因此 BE与CF互相垂直 5 例1 已知 ABC的三边a b c满足b2 c2 5a2 BE CF分别为边AC CF上的中线 建立适当的平面直角坐标系探究BE与CF的位置关系 还可怎么建立直角坐标系 A B C F E 分析 以AB所在直线为x轴 AB边上的高所在直线为y轴建立直角坐标系 设A m 0 B n 0 C 0 p 求出CF BE的斜率即可 6 坐标法 3 使图形上的特殊点尽可能多的在坐标轴上 建系时 根据几何特点选择适当的直角坐标系 注意以下原则 1 如果图形有对称中心 可以选对称中心为坐标原点 2 如果图形有对称轴 可以选择对称轴为坐标轴 7 M N P 例2圆O1与圆O2的半径都是1 O1O2 4 过动点P分别作圆O1 圆O2的切线PM PN M N分别为切点 使得PM PN 试建立适当的坐标系 求动点P的轨迹方程 解 以直线O1O2为x轴 线段O1O2的垂直平分线为y轴 建立平面直角坐标系 则两圆的圆心坐标分别为O1 2 0 O2 2 0 设P x y 则PM2 PO12 MO12 同理 PN2 O1 O2 8 练习 CA CO为半径为1的圆C上互相垂直的两条半径 A O为定点 P是以O为端点的动弦的中点 求A P间的最短距离 P 分析 以O为原点 OC所在直线为x轴建立坐标系 D 9 小结 求轨迹方程的常用方法 1 直接法 2 定义法 3 相关点法 4 参数法 10 平面直角坐标系中的伸缩变换 11 思考 怎样由正弦曲线y sinx得到曲线y sin2x 上述变换实质上就是一个坐标的压缩变换 即 设P x y 是平面直角坐标系中任意一点 我们把 式叫做平面直角坐标系中的一个坐标压缩变换 12 怎样由正弦曲线y sinx得到曲线y 3sinx 在正弦曲线上任取一点P x y 保持横坐标x不变 将纵坐标伸长为原来的3倍 就得到曲线y 3sinx 上述变换实质上就是一个坐标的伸长变换 即 设P x y 是平面直角坐标系中任意一点 设P x y 是平面直角坐标系中任意一点 保持横坐标x不变 将纵坐标y伸长为原来的3倍 得到点P x y 坐标对应关系为 我们把 式叫做平面直角坐标系中的一个坐标伸长变换 13 在正弦曲线y sinx上任取一点P x y 保持纵坐标不变 将横坐标x缩为原来的1 2 怎样由正弦曲线y sinx得到曲线y 3sin2x 在此基础上 将纵坐标变为原来的3倍 就得到正弦曲线y 3sin2x 即在正弦曲线y sinx上任取一点P x y 若设点P x y 经变换得到点为P x y 坐标对应关系为 把这样的变换叫做平面直角坐标系中的一个坐标伸缩变换 14 设P x y 是平面直角坐标系中任意一点 在变换 定义 称为平面直角坐标系中的伸缩变换 上述 都是坐标伸缩变换 在它们的作用下 可以实现平面图形的伸缩 在伸缩变换下 平面直角坐标系不变 在同一直角坐标系下进行伸缩变换 把图形看成点的运动轨迹 平面图形的伸缩变换可以用坐标伸缩变换得到 15 例1在直角坐标系中 求下列方程所对应的图形经过伸缩变换 后的图形 1 2x 3y 0 2 x2 y2 1 代入2x 3y 0 得到经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论