学习《初中数学中概率与统计学习的难点及解决策略》的思考.doc_第1页
学习《初中数学中概率与统计学习的难点及解决策略》的思考.doc_第2页
学习《初中数学中概率与统计学习的难点及解决策略》的思考.doc_第3页
学习《初中数学中概率与统计学习的难点及解决策略》的思考.doc_第4页
学习《初中数学中概率与统计学习的难点及解决策略》的思考.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学习初中数学中概率与统计学习的难点及解决策略的思考 通过对初中数学中概率与统计学习的难点及解决策的学习。我们应该明确以下几个方面:(一)明确它的研究对象 如何合理收集、整理、分析数据以及由数据分析结果作出决策的科学。统计与概率的基础知识已经是一个未来公民的必备常识。 (二)初中、小学统计与概率学习的要求差异小学阶段对统计与概率内容的学习要求:学生经历简单的数据统计过程,学习收集、整理和描述数据的方法,并能够根据数据分析的结果作出简单的判断与预测;体会事件发生可能性的含义,并能计算一些简单事件发生的可能性。 初中阶段对统计与概率内容的学习要求:体会抽样的必要性以及用样本估计总体的思想,进一步学习描述数据的方法,进一步体会概率的意义,能计算简单事件发生的概率。 (三)统计与概率学习与以前数学学习的差异 1 . 研究对象不同统计与概率研究的对象具有不确定性,但不确定性现象并不都是统计与概率研究的对象。例如 “两个人长得像 ”的现象也是不确定的,它是一种更复杂的不确定性,我们把它称为模糊性。不确定性的随机性与模糊性是有区别的:随机性的不确定,反映在某事件是否发生,判据是明确的;模糊性的不确定,反映在事件本身的涵义上,判据不分明。统计与概率研究的是前者;后者是模糊数学研究的内容。 2 . 研究的思路与方式不同 数学在研究确定性现象过程中所用的科学推理方式基本上属于演绎推理的方式,由一般到特殊;而统计学在研究不确定性现象时,由样本推断总体,使用的是归纳推理,而且很多时候是不完全归纳推理。因此,统计学研究所获得的结果不像以往学生学习的用演绎推理所获得的结果那样 “确定无疑 ”。 3 . 所获得的结果不同 统计学所得到并予以接受的结果主要是局部的、归纳性的;而以往在确定性数学的学习过程中,得到的经常是较为一般性的、演绎的结果。 这些差异的存在,都会造成学生在学习统计与概率过程中的困难。下面就具体分析一下这部分的难点及解决策略。 那么统计内容学习的难点在哪里呢? 1. 难点 “观念”,不同于计算、画图等简单技能,是一种需要在亲身经历的过程中培养出来的感觉。有些人将统计观念称为“数据感”或“信息观念”,无论用什么词汇,它反映的都是由一组数据所引发的想法、所推测到的所有可能的结果、自觉的联想到运用统计的方法解决有关的问题等。具体地说,统计观念可以在以下几个方面得到体现:认识到统计对决策的作用,能从统计的角度思考与数据有关的问题;能通过收集数据、描述数据、分析数据的过程,作出合理的决策;能对数据的来源、收集和描述数据的方法、由数据得到的结论进行合理的质疑。 2 . 解决策略 学生的生活经验中,潜在地存在统计意识。比如每年的联欢会在采购前,生活委员一定会调查同学的喜好,然后结合大多数同学的爱好进行采购。我们教学的重点是帮助学生挖掘这种潜意识,注重培养学生有意识的从统计的角度思考有关问题,也就是当遇到有关问题时能想到去收集数据和分析数据。应该做好以下几点 ( 1 )使学生经历统计活动的全过程 观念的建立需要人们亲身的经历。要使学生逐步建立统计观念,最有效的方法是让他们真正投入到统计活动的全过程中去:提出问题,收集数据,整理数据,分析数据,做出决策,进行交流、评价与改进。 在参与活动中学会 统计方法,渗透统计思想。 从另一个角度看,数学的发展往往也经历了这样一个过程,首先是问题的提出,然后是收集与这个问题相关的信息并进行整理,再根据这些信息做出一些判断以解释或解决开始提出的问题。提出问题这点特别重要,总之,一定要注意让学生经历活动的全过程。不仅要收集数据、填写统计表,绘制统计图、计算数据,而且感受统计图表的作用,并从中得出相关的结论。 ( 2 )使学生在现实情境中体会统计对决策的影响要培养学生从统计的角度思考问题的意识,重要的途径就是要在教学中结合生活实例展示统计的广泛应用,使学生在亲身经历解决实际问题的过程中体会统计对决策的作用。 例如:统计商店一个月内几种商品的销售情况,并对这个商店的进货提出你的建议;全球水资源的匮乏的事实众所周知,请学生对自家或学校的用水情况进行统计,并提出节水的合理化建议等等,让学生对身边他们感兴趣的事情展开调查,并能够结合所得数据解释统计结果,根据结果进行简单的判断与预测,清晰的表达自己的观点,能够和同伴交流,在解决问题的过程中,认识统计的作用,逐步树立从统计的角度思考问题。 (二) 抽样的合理性1 难点统计是以样本数据为基础,通过对数据的整理、描述和分析,发现数据的特征或规律,从而对总体的特征作出推断。所以样本的抽取是否具有代表性,在统计中至关重要。 不同的抽样将产生不同的结论。那么如何抽样更合理,对此学生还存在很多困惑。 2 解决策略 学生通过学习,了解了普查与抽查的区别,明确了抽查的必要性。但是由于 我们希望得到的数据能正确反映实际的状况, 所以抽出的样本要能代表这个全体。样本抽得好还是不好,这是非常重要的问题。比如我想了解这个区学生的学习成绩,找了 100 个学生,但他们都是实验班的学生,我想了解北京市学生的每天的学习时间,找的都是重点校的学生,这样的样本就代表性差。 有没有代表性的问题,是样本的一个核心问题。那么, 怎么能做到有代表性呢? 就是随机抽取。 例如:某校要了解初中学生课余体育锻炼的时间,以便改进集中体育活动的时间,请学生做调查。首先要根据学校的学生总数,确定样本容量,容量太小,不具有代表性,容量太大,费时费力;其次,要选择调查的地点,应尽可能涉及到各类学生,比如图书馆、运动场等,仅在一个地方调查,很容易缺乏代表性,比如只选择运动场,一定会得出结论,学生的每天运动时间过长,反之,只在图书馆做调查,一定会得到锻炼时间严重不足的结论。此外,还要考虑到各年级的学业负担不同而导致业余时间不同,因此应分年级调查等,可见,在抽样的过程中,要考虑的因素非常多,也比较复杂。初中阶段让学生明确取样时要结合调查的目的,确定调查对象以及调查方法 得到羊的概率为 2/3。如果换 3 号门,得到羊的概率为 1/3,得到汽车的概率为 2/3。从概率决策的角度应该换,观点三是正确的。 Diaconis 教授的观点是正确的。既然在概率大小的判断上有分歧,通过重复模拟实验,借助频率的大小来判断最有说服力。 (四) 概率与频率的关系1 难点 教学中,经常听到学生 这样叙述: “实验次数越多,用频率估计概率越准确 ”。 这样的叙述严密吗?概率与频率之间到底是什么样的关系?学生理解起来很困难。 2 解决策略 频率和概率是两个不同概念,频率与实验的次数有关 ,而频率的稳定性又说明了概率是一个客观存在的数 ,是随机事件自身的一个属性 , 它与实验次数无关。 虽然在概率计算中 ,我们一般用事件发生的频率去代替概率 , 这与实际并不矛盾 ,就象测定一根木棒的长度一样 ,人人皆知木棒有其客观存在的“真实长度” ,但用量具去测量 ,总会有误差 ,测得的数值总是稳定在木棒“真实长度”的附近 ,而得不到木棒的“真实长度”值。事实上 ,人们一般就用测量所得的近似值去代替“真实长度”。只不过根据实际要求选择精度不同的量具罢了。这里木棒的“真实长度”与测得数值之间的关系完全同概率与频率之间的关系一样。 历 ( 五 )对等可能的理解 1 难点 “等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提。正是因为“等可能”,所以才会有了“比率”。因此,“等可能性”和“比率”是古典定义教学中的两个落脚点。而学生在处理较为复杂的概率问题中,有时会忽视古典概率的使用条件:等可能。 2 . 解决策略 “等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻。因此,“等可能”并不要多么严密的物理上或化学上的分析,只需要通过例子感知一下“等可能”和“不等可能”即可,以便让学生明白古典定义的适用对象须具备的条件。 四、 统计与概率的关系 概率是刻画事件发生可能性大小的量,统计是通过处理数据,利用分析数据的结果进行预测或决策的过程。从统计学内在的知识体系看,概率是统计学的有机组成部分,在数据的分析阶段,可以利用概率进行统计分析,从数据中得出结论,根据结论进行预测或判断。因此,在初中阶段,可以把概率看成是统计过程的一个阶段。如果把整个初中阶段的统计内容按照统计活动的过程来安排,概率的内容安排在分析数据阶段更合适。另一方面,概率的内容相对比较抽象,其中包含丰富的随机性以及随机中有规律性的辨证思维。从学生的思维发展情况看,初中阶段只是辨证思维的萌芽,还很不成熟,因此概率的内容宜安排在学生辨证思维有一定发展的高年级阶段。 总之,初中的统计与概率的学习建立在小学学习的基础上,又将为高中的进一步研究奠定基础,所以这部分教学起着承上启下作用,在教学中一定加强重视。 五、对统计与概率教学的几点建议 (一)突出核心思想,把握重点和难点 对统计思想和概率意义的理解,是教学的重点,也是难点。不要把统计教学变成单纯的数据处理和计算技巧的讲解;不要把概率教学变成复杂的概率计算的训练;不要纠缠一些无关紧要的细节而干扰主题。 现在的情况是,许多学生可以计算概率,但面对需要用概率和统计思想解决实际问题时,显的束手无策。这说明在教学中,过多的关注了知识技能的学习,忽视思想方法的理解。教学中需要教师给学生提供丰富的素材,也可以让学生自己去收集与统计、概率相关的实际问题,然后运用所学的知识解决问题。 (二)充分了解学情,明确教学目标 由于对于这部分知识,学生具备一些基础,所以教学要针对学生的问题进行设计,而不能仅仅依据自己的主观臆断或凭经验。例如对于三种事件的教学,有的教师将时间均匀分配。这种课堂的效率比较低。关于什么叫必然事件,什么叫不可能事件,对于学生来说,应该是没有太大的困难的。重要的应讲清什么是随机事件。一定是在相同条件下,可以重复实验下,可能发生可能不发生的。可以设计一些问题来让学生区分,不是在相同条件下的情形不确定的事件;不能重复实验的情形等等。根据初中学生的能力水平,可以突出统计和概率所研究的随机现象的这种偶然性,它是怎么发生的,这个随机性具有什么样的特征。应该把整堂课的教学的重点放在这个可能性事件,怎么去刻画和描述上。教师要明白你想解决学生什么问题,学生哪一点是原来不懂的,这堂课我希望他能够懂些什么,这个目的要明确。这是教学中应遵循的规律。特别是这些新增内容,教师要在前期对学生的掌握情况作充分的调查,以增强教学的针对性。 (三)必要的操作实验不可省 概率的统计规律性本身就是通过实验发现的,用样本推断总体的方法,可以认为是实验科学。在初中阶段,由于课时以及学生认知水平的限制,我们不可能也没有必要用严密的方法揭示一些稳定性规律,评价统计方法的优劣。设计恰当的实验,直观认识随机性规律、树立概率观点、理解统计思想是必要的,也是可行的。在一些具体问题中,可以通过实验纠正对概率判断上的错误观点,统一认识,消除争议。(四)重视反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论