《集合及其运算》PPT课件.ppt_第1页
《集合及其运算》PPT课件.ppt_第2页
《集合及其运算》PPT课件.ppt_第3页
《集合及其运算》PPT课件.ppt_第4页
《集合及其运算》PPT课件.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1讲集合及其运算 1 了解集合的含义 元素与集合的属于关系 能用列举 描述法表示集合 2 理解集合之间包含与相等的含义 能识别给定集合的子集 了解全集与空集的含义 3 理解并会求并集 交集 补集 能使用韦恩 Venn 图表达集合间的关系与运算 确定性 互异性 无序性 不属于 属于 列举法 描述法 图示法 2 集合间的基本关系 A B A B 子集 合的真子集 是任何非空集 3 集合的基本运算 x x A 或x B x x A 且x B x x U 且x A 4 对于任意两个集合A B 关系 A B A B 总成立 5 2013 浙江卷改编 设集合S x x 2 T x x2 3x 4 0 则 RS T x 4 x 1 感悟 提升 运用数轴图示法时要特别注意端点是实心还是空心 感悟 提升 1 别忽视元素的互异 2 别混淆了数集与点集 考点二 对集合基本运算的辨别 4 对于任意两个集合A B 关系 A B A B 总成立 5 2013 浙江卷改编 设集合S x x 2 T x x2 3x 4 0 则 RS T x 4 x 1 感悟 提升 运用数轴图示法时要特别注意端点是实心还是空心 考点二 对集合基本运算的辨别 4 对于任意两个集合A B 关系 A B A B 总成立 5 2013 浙江卷改编 设集合S x x 2 T x x2 3x 4 0 则 RS T x 4 x 1 感悟 提升 运用数轴图示法时要特别注意端点是实心还是空心 3 集合的运算性质 A B B A B A B A A B A UA U A UA 考点一集合的基本概念 例1 1 2013 江西卷 若集合A x R ax2 ax 1 0 中只有一个元素 则a A 4B 2C 0D 0或4 2 2013 山东卷 已知集合A 0 1 2 则集合B x y x A y A 中元素的个数是 A 1B 3C 5D 9 解析 1 由ax2 ax 1 0只有一个实数解 可得当a 0时 方程无实数解 当a 0时 则 a2 4a 0 解得a 4 a 0不合题意舍去 2 x y 2 1 0 1 2 答案 1 A 2 C规律方法集合中元素的三个特性中的互异性对解题影响较大 特别是含有字母的集合 在求出字母的值后 要注意检验集合中的元素是否满足互异性 答案1 考点二集合间的基本关系 例2 1 已知集合A x 2 x 7 B x m 1 x 2m 1 若B A 求实数m的取值范围 2 设U R 集合A x x2 3x 2 0 B x x2 m 1 x m 0 若 UA B 求m的值 审题路线 1 分B 和B 两种情况求解 当B 时 应注意端点的取值 2 先求A 再利用 UA B B A 应对B分三种情况讨论 2 A 2 1 由 UA B 得B A 方程x2 m 1 x m 0的判别式 m 1 2 4m m 1 2 0 B B 1 或B 2 或B 1 2 若B 1 则m 1 若B 2 则应有 m 1 2 2 4 且m 2 2 4 这两式不能同时成立 B 2 若B 1 2 则应有 m 1 1 2 3 且m 1 2 2 由这两式得m 2 经检验知m 1和m 2符合条件 m 1或2 规律方法 1 已知两个集合之间的关系求参数时 要明确集合中的元素 对子集是否为空集进行分类讨论 做到不漏解 2 在解决两个数集关系问题时 避免出错的一个有效手段是合理运用数轴帮助分析与求解 另外 在解含有参数的不等式 或方程 时 要对参数进行讨论 训练2 1 已知集合A x x2 3x 2 0 x R B x 0 x 5 x N 则满足条件A C B的集合C的个数为 A 1B 2C 3D 4 2 2014 郑州模拟 已知集合A 1 1 B x ax 1 0 若B A 则实数a的所有可能取值的集合为 A 1 B 1 C 1 1 D 1 0 1 答案 1 D 2 D A x x 0 B x 2 x 4 C x 0 x 2 或x 4 D x 0 x 2 或x 4 2 2014 唐山模拟 若集合M y y 3x 集合S x y lg x 1 则下列各式正确的是 A M S MB M S SC M SD M S 答案 1 C 2 A规律方法一般来讲 集合中的元素离散时 则用Venn图表示 集合中的元素是连续的实数时 则用数轴表示 此时要注意端点的情况 训练3 1 已知全集U 0 1 2 3 4 集合A 1 2 3 B 2 4 则 UA B为 A 1 2 4 B 2 3 4 C 0 2 4 D 0 2 3 4 2 已知全集U R 集合A x 1 x 3 集合B x log2 x 2 1 则A UB 解析 1 UA 0 4 UA B 0 2 4 2 由log2 x 2 1 得0 x 2 2 2 x 4 所以B x 2 x 4 故 UB x x 2 或x 4 从而A UB x 1 x 2 答案 1 C 2 x 1 x 2 数轴和韦恩 Venn 图是进行集合交 并 补运算的有力工具 数形结合是解集合问题的常用方法 解题时要先把集合中各种形式的元素化简 使之明确化 尽可能地借助数轴 直角坐标系或韦恩图等工具 将抽象的代数问题具体化 形象化 直观化 然后利用数形结合的思想方法解决 创新突破1 与集合有关的新概念问题 典例 已知集合A 1 2 3 4 5 B x y x A y A x y A 则B中所含元素的个数为 A 3B 6C 8D 10 解析法一 列表法 因为x A y A 所以x y的取值只能为1 2 3 4 5 故x y及x y的取值如下表所示 由题意x y A 故x y只能取1 2 3 4 由表可知实数对 x y 的取值满足条件的共有10个 即B中的元素个数为10 故选D 法二 直接法 因为A 1 2 3 4 5 所以集合A中的元素都为正数 若x y A 则必有x y 0 x y 当y 1时 x可取2 3 4 5 共有4个数 当y 2时 x可取3 4 5 共有3个数 当y 3时 x可取4 5 共有2个数 当y 4时 x只能取5 共有1个数 当y 5时 x不能取任何值 综上 满足条件的实数对 x y 的个数为4 3 2 1 10 答案D 反思感悟 1 解决集合中新定义问题的关键是准确理解新定义的实质 紧扣新定义进行推理论证 把其转化为我们熟知的基本运算 2 以集合为载体的新定义问题 是高考命题创新型试题的一个热点 常见的命题形式有新概念 新法则 新运算等 这类试题中集合只是基本的依托 考查的是考生创造性解决问题的能力 自主体验 1 2013 广东卷 设整数n 4 集合X 1 2 3 n 令集合S x y z x y z X 且三条件x y z y z x z x y恰有一个成立 若 x y z 和 z w x 都在S中 则下列选项正确的是 A y z w S x y w SB y z w S x y w SC y z w S x y w SD y z w S x y w S 解析题目中x y z y z x z x y恰有一个成立说明x y z是互不相等的三个正整数 可用特殊值法求解 不妨取x 1 y 2 z 3 w 4满足题意 且 2 3 4 S 1 2 4 S 从而 y z w S x y w S成立 答案B 2 2013 浙江部分重点中学调研 设A是整数集的一个非空子集 对于k A 如果k 1 A 且k 1 A 那么称k是A的一个 好元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论