数据包络分析ppt课件.ppt_第1页
数据包络分析ppt课件.ppt_第2页
数据包络分析ppt课件.ppt_第3页
数据包络分析ppt课件.ppt_第4页
数据包络分析ppt课件.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数据包络分析 王嘉伟 1 技术效率 技术效率指一个生产单元的生产过程达到该行业技术水平的程度 可以从投入和产出两个角度来衡量1 投入既定时 技术效率由产出最大化的程度来衡量2 产出既定时 技术效率由投入最小化的程度来衡量技术效率 产出 投入 单产出 单投入的情况 2 技术效率 实际生产过程中涉及的投入 产出不止一项 要对各投入和产出指标赋予一定的权重 技术效率 加权产出 加权投入假设有m种投入和q种产出 加权投入 v v1x1 v2x2 vmxm加权产出 u u1y1 u2y2 uqyq 3 如何确定权重 1 采用固定的权重2 通过数据本身获得权重 数据包络分析方法 4 基本概念 决策单元 DMU 可以是一个大学 也可以是一个企业 也可以是一个国家 在许多情况下 我们对多个同类型的DMU更感兴趣 同类型的DMU 是指具有以下特征的DMU集合 具有相同的目标和任务 具有相同的外部环境 具有相同的输入和输出指标 同一个DMU的不同时段也可视为同类型DMU 5 数据包络分析简介 数据包络分析 DataEnvelopmentAnalysis 简称DEA 是著名运筹学家A Charnes和W W Copper等学者以 相对效率 概念为基础 根据多指标投入和多指标产出对相同类型的单位进行相对有效性或效益评价的一种新的系统分析方法 它是处理多目标决策问题的好方法 决策单元相对有效称为DEA有效 6 数据包络分析简介 通过输入和输出数据的综合分析 DEA可以得出每个DMU综合效率的数量指标 据此将各决策单元定级排队 确定有效的决策单元 并可给出其它决策单元非有效的原因和程度 即它不仅可对同一类型各决策单元的相对有效性做出评价与排序 而且还可以进一步分析各决策单元非DEA有效的原因及其改进方向 从而为决策者提供重要的管理决策信息 7 基于规模收益不变的CCR模型 在社会 经济和管理领域中 常常需要对具有相同类型的部门 企业或者同一单位不同时期的相对效率进行评价 这些部门 企业或时期称为决策单元 评价的依据 决策单元的一组投入指标数据和一组产出指标数据 投入指标是决策单元在社会 经济和管理活动中需要耗费的经济量 产出指标表明经济活动产出成效的经济量 根据投入指标数据和产出指标数据评价部门 企业或时期之间的相对有效性 8 9 基于规模收益不变的CCR模型 每个决策单元DMUj都有相应的效率评价指数 我们可以适当的取权系数v和u 使得 1 10 基于规模收益不变的CCR模型 现在 对第j0个决策单元进行效率评价 一般来说 hj0越大 表明DMUj0能够用相对较少的输入而得到相对较多的输出 如果我们要对DMUj0进行评价 看DMUj0在这n个DMU中相对来说是不是最优的 我们可以考察当尽可能地变化权重时 hj0的最大值究竟是多少 以第j0个决策单元的效率指数为目标 以所有决策单元 含第j0个决策单元 的效率指数为约束 就构造如下的CCR模型 11 12 规模收益不变 规模收益不变 技术效率保持不变的条件下 如果一个DMU的投入变成原来的t倍 其产出也会相应变成原来的t倍 即 假设被评价的DMUk的投入和产出都变成原来的t倍 在规模收益不变的假设下 其技术效率应保持不变 13 上式是一个分式规划问题 使用Charnes Cooper变化 即令 则可得到C2R的的线性规划模型 14 一个小例子 例 四个人的输入输出见下表 试用DEA方法分析其有效性 15 一个小例子 16 基于规模收益不变的CCR模型 现在 我们考虑的另外一种形式 如果要衡量某一决策单元j0是否DEA有效 即是否处在由包络线组成的生产前沿面上 为此先构造一个有n个决策单元线性组合成的假想决策单元 这个假想决策单元的第i项投入为该假想决策单元的第r项产出为 17 基于规模收益不变的CCR模型 如果这个假想的决策单元的各项产出均不低于j0决策单元的各项产出 它的各项投入均低于j0的各项投入 当 1时 即有这说明j0决策单元不在生产前沿面上 18 基于规模收益不变的CCR模型 基于上述 可以写出如下数学模型 该式也是的对偶形式 当求解结果有 1 则决策单元j0非DEA有效 否则 j0决策单元DEA有效 19 应用线性规划对偶理论 我们可以通过对偶规划来判断的有效性 为了讨论及应用方便 进一步引入松弛变量s 和剩余变量s 将上面的不等式约束变为等式约束 20 下面给出几条定理与定义 定理1 线性规划P和其对偶规划D均存在可行解 所以都存在最优值 假设它们的最优值分别为与 则 1 定义1 若线性规划P的最优值 1 则称决策单元为弱DEA有效 21 产出导向的CCR模型 其对偶模型为 22 23 24 基于规模收益可变的BCC模型 BCC模型是在CCR对偶模型的基础上增加了约束条件 其作用是使投影点的生产规模与被评价DMU的生产规模处于同一水平 25 投入导向的BCC模型 其对偶模型为 26 产出导向的BCC模型 其对偶模型为 27 例 某银行的四个分理处的投入和产出情况见下表 要求分别确定各分理处的运行是否DEA有效 分理处 分理处1分理处2分理处3分理处4 投入 产出 职工数 营业面积 储蓄 贷款 中间业务 15202120 18001000800900 140130120135 2003504504

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论