28.1锐角三角函数(1).doc_第1页
28.1锐角三角函数(1).doc_第2页
28.1锐角三角函数(1).doc_第3页
28.1锐角三角函数(1).doc_第4页
28.1锐角三角函数(1).doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

28.1 锐角三角函数教学目标 1知识与技能(1)了解锐角三角函数的概念,能够正确应用sinA、cosA、tanA表示直角三角形中两边的比。 (2)能够将正弦、很好的在直角三角形中应用。 2过程与方法 通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力 3情感、态度与价值观 引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯 重点与难点 1重点:正弦这个三角函数概念及其应用 2难点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实用含有几个字母的符号组sinA表示正弦;正弦概念 教学方法学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,教学中应十分重视同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,在教学中应作为难点处理教学过程一 探究新知 (1)问题的引入 教师讲解:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管? 教师提出问题:怎样将上述实际问题用数学语言表达,要求学生写在纸上,互相讨论,看谁写得最合理,然后由教师总结教师总结:这个问题可以归纳为,在RtABC中,C=90,A=30,BC=35m,求AB根据“在直角三角形中,30角所对的边等于斜边的一半”,即 可得AB=2BC=70m,也就是说,需要准备70m长的水管 教师更换问题的条件后提出新问题:在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?要求学生在解决新问题时寻找解决这两个问题的共同点 教师引导学生得出这样的结论:在上面求AB(所需水管的长度)的过程中,虽然问题条件改变了,但我们所用的定理是一样的:在一个直角三角形中,如果一个锐角等于30,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于也是说,只要山坡的坡度是30这个条件不变,那么斜边与对边的比值不变教师提出第2个问题:既然直角三角形中,30角的斜边与对边的比值不变,那么其他角度的对边与斜边的比值是否也不会变呢?我们再换一个解试一试如课本图281-2,在RtABC中,C=90,A=45,A对边与斜边的比值是一个定值吗?如果是,是多少? 教师要求学生自己计算,得出结论,然后再由教师总结:在RtABC中,C=90由于A=45,所以RtABC是等腰直角三角形,由勾股定理得AB2=AC2+BC2=2BC2,AB=BC 因此 =, 即在直角三角形中,当一个锐角等于45时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于 教师再将问题提升到更高一个层次:从上面这两个问题的结论中可知,在一个RtABC中,C=90,当A=30时,A的对边与斜边的比都等于,是一个固定值;当A=45时,A的对边与斜边的比都等于,也是一个固定值这就引发我们产生这样一个疑问:当A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 教师直接告诉学生,这个问题的回答是肯定的,并边板书,边与学生共同探究证明方法这为问题可以转化为以下数学语言:任意画RtABC和RtABC(课本图281-3),使得C=C=90,A=A=a,那么有什么关系 在课本图281-3中,由于C=C=90,A=A=a,所以RtABCRtABC,即 这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是一个固定值 二 正弦函数概念的提出 教师讲解:在日常生活中和数学活动中上面所得出的结论是非常有用的为了引用这个结论时叙述方便,数学家作出了如下规定:如课本图281-4,在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = 在课本图281-4中,A的对边记作a,B的对边记作b,C的对边记作c 例如,当A=30时,我们有sinA=sin30=; 当A=45时,我们有sinA=sin45= 三 正弦函数的简单应用 例1 如课本图281-5,在RtABC中,C=90,求sinA和sinB的值 教师对题目进行分析:求sinA就是要确定A的对边与斜边的比;求sinB就是要确定B的对边与斜边的比我们已经知道了A对边的值,所以解题时应先求斜边的高 解:如课本图285-1(1),在RtABC中, AB=5 因此 sinA=,sinB= 如课本图285-1(2),在RtABC中, sinA=,AC=12 因此,sinB= 随堂练习 做课本第77页练习 课时总结 在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是一个固定值 在RtABC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA, 课本练习做课本第82页习题281复习巩固第1题、第2题(只做与正弦有关部分) 双基与中考 1如图1,已知点P的坐标是(a,b),则sin等于( )A B C (1) (2) (3) 2(2005,南京)如图2,在ABC中,AC=3,BC=4,AB=5,则tanB的值是( )A B C D 3在RtABC中,C=90,sinA=,则sinB等于( ) A B C D 4(2004辽宁大连)在RtABC中,C=90,a=1,c=4,则sinA的值是( ) A 5如图3,在RtABC中,C=90,AB=10,sinB=,BC的长是( ) A228.1锐角三角函数定义: 例题1: 练习1表达式: 特

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论